Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar...Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.展开更多
Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrode...Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.展开更多
Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling perform...Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling performances.Herein,a bimetal ZnMn-based metal-organic framework(ZnMn-MOF)is engineered for in situ conversion of MnO-encapsulated porous carbon(MnO/PC)composite.The templating and activation effects of coordinated Zn endow the converted PC matrix with a highly porous structure.This enhances the compatibility of PC matrix with MnO particles,resulting in the full encapsulation of MnO particles in the PC matrix.More significantly,the PC matrix provides enough void space to buffer the volume change,which fully wraps the MnO without crack or fracture during repeated cycling.As a result,MnO/PC shows high charge storage capability,extraordinary rate performance,and long-term cycling stability at the same time.Thus MnO/PC exhibits high delithiation capacities of 768mA h g^(-1)at 0.1Ag^(-1)and 487mA h g^(-1)at a high rate of 0.7Ag^(-1),combined with an unattenuated cycling performance after 500 cycles at 0.3Ag^(-1).More significantly,MnO/PC demonstrates a well-matched performance with the capacitive activated carbon electrode in a Li-ion capacitor(LIC)full cell.LIC demonstrates a high specific energy of 153.6W h kg^(-1)at 210W kg^(-1),combined with a specific energy of 71.8W h kg^(-1)at a high specific power of 63.0kW kg^(-1).展开更多
In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for as...In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for asymmetric supercapacitors. Benefiting from the synergetic contribution between the distinctive electroactive materials and the skeletons, the as-constructed N-GNTs@NiCoSe2/Ni3-Se2LAs present a specific capacitance of ~1308 F g^-1 at a current density of 1 A g^-1. More importantly, the hybrid electrode also reveals excellent rate capability(~1000 F g^-1 even at 100 A g^-1) and appealing cycling performance(~103.2% of capacitance retention over 10,000 cycles). Furthermore, an asymmetric supercapacitor is fabricated by using the obtained N-GNTs@NiCoSe2/Ni3Se2LAs and active carbon(AC) as the positive and negative electrodes respectively,which holds a high energy density of 42.8 W h kg^-1 at 2.6 k W kg^-1, and superior cycling stability of ~94.4% retention over 10,000 cycles. Accordingly, our fabrication technique and new insight herein can both widen design strategy of multicomponent composite electrode materials and promote the practical applications of the latest emerging transition metal selenides in next-generation high-performance supercapacitors.展开更多
Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low el...Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low electron conductivity plagues the lifetime and cell performance of the ITMO negative electrode.Here we design a new carbon-emcoating architecture through single CO_(2)activation treatment as demonstrated by the Nb_(2)O_(5)/C nanohybrid.Triple structure engineering of the carbon-emcoating Nb_(2)O_(5)/C nanohybrid is achieved in terms of porosity,composition,and crystallographic phase.The carbon-embedding Nb_(2)O_(5)/C nanohybrids show superior cycling and rate performance compared with the conventional carbon coating,with reversible capacity of 387 m A h g(-1)at 0.2 C and 92%of capacity retained after 500cycles at 1 C.Differential electrochemical mass spectrometry(DEMS) indicates that the carbon emcoated Nb_(2)O_(5)nanohybrids present less gas evolution than commercial lithium titanate oxide during cycling.The unique carbon-emcoating technique can be universally applied to other ITMO negative electrodes to achieve high electrochemical performance.展开更多
文摘Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 50971103 and 51271150)the Program for New Century Excellent Talentsthe NPU Foundation for Fundamental Research
文摘Experimental and computational methods are used to optimize the electrostatic field for levitating metallic materials.The calculated launch voltage increases linearly with the distance between top and bottom electrodes.The combination of a larger top electrode diameter with a smaller bottom diameter may enhance the levitation ability because the electric field intensity near the levitated sample is strengthened.Top convex and bottom concave electrodes can guarantee good levitation stability but decrease the levitation force.The design of bottom electrode is crucial to attain not only a stable levitation state but also a higher levitation capability.As a measure characterizing the intrinsic levitation ability of various materials,the product of density and diameter of levitated samples can be used to determine the launch voltage for counteracting gravity according to a power relationship.
基金supported by the National Natural Science Foundation of China(21905148)China Postdoctoral Science Foundation(2019T120567 and 2017M612184)+2 种基金the 1000-Talents Planthe World-Class Discipline Programthe Taishan Scholars Advantageous and Distinctive Discipline Program of Shandong province for supporting the research team of energy storage materials.
文摘Conversion-type anode materials hold great potential for Li+storage applications owing to their high specific capacity,while large volume expansion and poor electrical conductivity limit their rate and cycling performances.Herein,a bimetal ZnMn-based metal-organic framework(ZnMn-MOF)is engineered for in situ conversion of MnO-encapsulated porous carbon(MnO/PC)composite.The templating and activation effects of coordinated Zn endow the converted PC matrix with a highly porous structure.This enhances the compatibility of PC matrix with MnO particles,resulting in the full encapsulation of MnO particles in the PC matrix.More significantly,the PC matrix provides enough void space to buffer the volume change,which fully wraps the MnO without crack or fracture during repeated cycling.As a result,MnO/PC shows high charge storage capability,extraordinary rate performance,and long-term cycling stability at the same time.Thus MnO/PC exhibits high delithiation capacities of 768mA h g^(-1)at 0.1Ag^(-1)and 487mA h g^(-1)at a high rate of 0.7Ag^(-1),combined with an unattenuated cycling performance after 500 cycles at 0.3Ag^(-1).More significantly,MnO/PC demonstrates a well-matched performance with the capacitive activated carbon electrode in a Li-ion capacitor(LIC)full cell.LIC demonstrates a high specific energy of 153.6W h kg^(-1)at 210W kg^(-1),combined with a specific energy of 71.8W h kg^(-1)at a high specific power of 63.0kW kg^(-1).
基金supported by the National Natural Science Foundation of China (51672144, 51572137 and 51702181)the Natural Science Foundation of Shandong Province (ZR2017BB013 and ZR2019BEM042)+2 种基金Higher Educational Science and Technology Program of Shandong Province (J17KA014, J18KA001 and J18KA033)Taishan Scholars Program of Shandong Province (ts201511034)Overseas Taishan Scholars Program
文摘In this paper, we report a one-step electrodeposited synthesis strategy for directly growing NiCoSe2/Ni3Se2 lamella arrays(LAs) on N-doped graphene nanotubes(N-GNTs) as advanced free-standing positive electrode for asymmetric supercapacitors. Benefiting from the synergetic contribution between the distinctive electroactive materials and the skeletons, the as-constructed N-GNTs@NiCoSe2/Ni3-Se2LAs present a specific capacitance of ~1308 F g^-1 at a current density of 1 A g^-1. More importantly, the hybrid electrode also reveals excellent rate capability(~1000 F g^-1 even at 100 A g^-1) and appealing cycling performance(~103.2% of capacitance retention over 10,000 cycles). Furthermore, an asymmetric supercapacitor is fabricated by using the obtained N-GNTs@NiCoSe2/Ni3Se2LAs and active carbon(AC) as the positive and negative electrodes respectively,which holds a high energy density of 42.8 W h kg^-1 at 2.6 k W kg^-1, and superior cycling stability of ~94.4% retention over 10,000 cycles. Accordingly, our fabrication technique and new insight herein can both widen design strategy of multicomponent composite electrode materials and promote the practical applications of the latest emerging transition metal selenides in next-generation high-performance supercapacitors.
基金supported by the National Key R&D Program of China(2016YFB0100100)the National Natural Science Foundation of China(51702335 and 21773279)+8 种基金Zhejiang Non-profit Technology Applied Research Program(LGG19B010001)Ningbo Municipal Natural Science Foundation(2018A610084)the CAS-EU S&T Cooperation Partner Program(174433KYSB20150013)the Key Laboratory of Bio-based Polymeric Materials of Zhejiang Provincethe funding from Marie Sklodowska-Curie Fellowship in EUthe Engineering and Physical Sciences Research Council(EPSRC),including the SUPERGEN Energy Storage Hub(EP/L019469/1)Enabling Next Generation Lithium Batteries(EP/M009521/1)Henry Royce Institute for Advanced Materials(EP/R00661X/1,EP/S019367/1,EP/R010145/1)the Faraday Institution All-Solid-State Batteries with Li and Na Anodes(FIRG007,FIRG008)for financial support。
文摘Intercalation transition metal oxides (ITMO)have attracted great attention as lithium-ion battery negative electrodes due to high operation safety,high capacity and rapid ion intercalation.However,the intrinsic low electron conductivity plagues the lifetime and cell performance of the ITMO negative electrode.Here we design a new carbon-emcoating architecture through single CO_(2)activation treatment as demonstrated by the Nb_(2)O_(5)/C nanohybrid.Triple structure engineering of the carbon-emcoating Nb_(2)O_(5)/C nanohybrid is achieved in terms of porosity,composition,and crystallographic phase.The carbon-embedding Nb_(2)O_(5)/C nanohybrids show superior cycling and rate performance compared with the conventional carbon coating,with reversible capacity of 387 m A h g(-1)at 0.2 C and 92%of capacity retained after 500cycles at 1 C.Differential electrochemical mass spectrometry(DEMS) indicates that the carbon emcoated Nb_(2)O_(5)nanohybrids present less gas evolution than commercial lithium titanate oxide during cycling.The unique carbon-emcoating technique can be universally applied to other ITMO negative electrodes to achieve high electrochemical performance.