Time-resolved (TR)photoluminescence (PL) technique has shown great promise in ultrasensitive biodetection and high-resolution bioimaging.Hitherto,almost all the TRPL bioprobes are based on the parity-forbidden f→f tr...Time-resolved (TR)photoluminescence (PL) technique has shown great promise in ultrasensitive biodetection and high-resolution bioimaging.Hitherto,almost all the TRPL bioprobes are based on the parity-forbidden f→f transition of lanthanide ions.Herein,we report TRPL biosensing by taking advantage of the d→d transition of transition metal (TM)Mn^2+ ion.We demonstrate that the Forster resonance energy transfer (FRET)signal can be distinguished from that of radiative reabsorption process through measuring the PL lifetime of Mn^2+,thus establishing a reliable method for Mn^2+ in homogeneous TR-FRET biodetection.We also demonstrate the biotin receptor-targeted cancer cell imaging by utilizing biotinylated CaF2:Ce,Mn nanoprobes.Furthermore,we show in a proof-of-concept experiment the appli- cation of the long-lived PL of Mn^2+ for TRPL bioimaging through the burst shot with a cell phone.These findings provide a general approach for exploiting the long-lived PL of TM ions for TRPL biosensing,thereby opening up a new avenue for the exploration of novel and versatile applications of TM ions.展开更多
基金supported by National Program on Key Basic Research Project (973 Program, 2014CB845605) the Strategic Priority Research Program of the CAS (XDB20000000)+3 种基金 the National Natural Science Foundation of China (21325104, 11774345, 21771185, 21501180 and 21650110462)the CAS/SAFEA International Partnership Program for Creative Re-search Teams, the Youth Innovation Promotion Association (2016277)the Chunmiao Project of Haixi Institutes of the CAS (CMZX-2016-002)Natural Science Foundation of Fujian Province (2017I0018 and 2017J05095)
文摘Time-resolved (TR)photoluminescence (PL) technique has shown great promise in ultrasensitive biodetection and high-resolution bioimaging.Hitherto,almost all the TRPL bioprobes are based on the parity-forbidden f→f transition of lanthanide ions.Herein,we report TRPL biosensing by taking advantage of the d→d transition of transition metal (TM)Mn^2+ ion.We demonstrate that the Forster resonance energy transfer (FRET)signal can be distinguished from that of radiative reabsorption process through measuring the PL lifetime of Mn^2+,thus establishing a reliable method for Mn^2+ in homogeneous TR-FRET biodetection.We also demonstrate the biotin receptor-targeted cancer cell imaging by utilizing biotinylated CaF2:Ce,Mn nanoprobes.Furthermore,we show in a proof-of-concept experiment the appli- cation of the long-lived PL of Mn^2+ for TRPL bioimaging through the burst shot with a cell phone.These findings provide a general approach for exploiting the long-lived PL of TM ions for TRPL biosensing,thereby opening up a new avenue for the exploration of novel and versatile applications of TM ions.