期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
金属有机骨架材料(MOFs)用于乙烷/乙烯的高效分离 被引量:6
1
作者 兰天昊 贺朝辉 +2 位作者 杨玲 李晋平 李立博 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2019年第6期1219-1227,共9页
乙烯是重要的石油化工原料之一,在其生产过程中会产生乙烷等杂质气体,乙烷与乙烯的物理性质接近,采用传统精馏分离能耗较高。变压吸附工艺绿色高效,但是缺乏高效的乙烷选择性吸附剂。金属有机骨架材料(MOFs)是一类由金属离子与有机配体... 乙烯是重要的石油化工原料之一,在其生产过程中会产生乙烷等杂质气体,乙烷与乙烯的物理性质接近,采用传统精馏分离能耗较高。变压吸附工艺绿色高效,但是缺乏高效的乙烷选择性吸附剂。金属有机骨架材料(MOFs)是一类由金属离子与有机配体搭建而成的多孔配位聚合物,因其具有高比表面积、高孔隙率等优势,近年来在低碳烃分离领域显示出巨大的应用潜力。笔者介绍了系列乙烷选择性MOFs材料,其独特的结构能够比较好地选择性吸附乙烷,从而实现高效纯化乙烯气体,直接分离得到纯度≥99.95%的聚合级乙烯产品。综合前期的研究成果,指出提高乙烷选择性MOFs材料的选择性、吸附量及稳定性是未来该材料发展的重要方向。 展开更多
关键词 金属有机骨架材料(MOFs) 乙烷/乙烯(C2H6/C2H4)分离 不饱和金属空位 乙烷吸附位点
下载PDF
Boosting CO_(2) photoreduction by synergistic optimization of multiple processes through metal vacancy engineering
2
作者 Jinlong Wang Dongni Liu +3 位作者 Mingyang Li Xiaoyi Gu Shiqun Wu Jinlong Zhang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期202-212,共11页
The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of ... The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts. 展开更多
关键词 PHOTOCATALYST CO_(2) photoreduction Indium oxide Metal vacancy Defect
下载PDF
采用CdTe压盖层的本征p型HgCdTe
3
作者 《红外》 CAS 2001年第6期45-45,共1页
本发明提供一种确定HgCdTe衬底中金属空位浓度的方法。该方法的实施步骤为:在HgCdTe衬底上压盖一层富碲的CdTe,然后在足以支持富碲CdTe层与HgCdTe衬底之间互相扩散的温度下对该衬底进行退火。此外。
关键词 CDTE 压盖层 P型 HGCDTE 衬底 金属空位浓度
下载PDF
CO oxidation over Au/ZrLa-doped CeO_2 catalysts: Synergistic effect of zirconium and lanthanum 被引量:3
4
作者 杨琦 杜林颖 +2 位作者 王旭 贾春江 司锐 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1331-1339,共9页
The physicochemical properties of nanosized Au catalysts supported on doped CeO2 and their cata‐lytic performance for the CO oxidation reaction were investigated. The Au/Zr‐doped CeO2 catalyst is much more active th... The physicochemical properties of nanosized Au catalysts supported on doped CeO2 and their cata‐lytic performance for the CO oxidation reaction were investigated. The Au/Zr‐doped CeO2 catalyst is much more active than undoped Au/CeO2, while Au/ZrLa‐doped CeO2 shows the highest activity. Characterization of the catalysts by X‐ray diffraction, transmission electron microscopy (TEM), high‐resolution TEM, and the X‐ray absorption fine structure technique shows high homogeneity of the oxide supports and well‐dispersed nanosized Au nanoparticles. Raman spectroscopy, X‐ray photoelectron spectroscopy, and H2‐tempeature‐programmed reduction show that the surface oxygen species are the main factor for the catalytic activity in the CO oxidation reaction, while the supported Au species can improve the redox properties and create oxygen vacancy sites on the support. The oxidation state of Au is not the main factor governing the activity of Au/doped‐CeO2 catalysts. Additionally, the synergistic effect of Zr and La is discussed. 展开更多
关键词 Gold catalyst Doped ceria Oxygen vacancy Carbon monoxide oxidation Metal-support interaction
下载PDF
Photo-enhanced thermal catalytic CO_(2) methanation activity and stability over oxygen-deficient Ru/TiO_(2) with exposed TiO_(2){001}facets:Adjusting photogenerated electron behaviors by metal-support interactions 被引量:3
5
作者 Ke Wang Shihui He +3 位作者 Yunzhi Lin Xun Chen Wenxin Dai Xianzhi Fu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期391-402,共12页
In this study,two Ru/TiO_(2)samples with different TiO_(2)facets were prepared to investigate their photo-thermal catalytic CO_(2)+H_(2)reaction behavior.Without UV irradiation,the Ru/TiO_(2)with 67%{001}facet(3 RT)di... In this study,two Ru/TiO_(2)samples with different TiO_(2)facets were prepared to investigate their photo-thermal catalytic CO_(2)+H_(2)reaction behavior.Without UV irradiation,the Ru/TiO_(2)with 67%{001}facet(3 RT)displayed improved thermal catalytic activity for CO_(2)methanation than that of Ru/TiO_(2)with 30%{001}facet(0 RT).After H_(2)pretreatment,both samples exhibited enhanced thermal catalytic activities,but the H_(2)-treated 3 RT(3 RT-H)exhibited superior activity to that of the H_(2)-treated 0 RT(0 RT-H).Under UV irradiation,3 RT-H exhibited apparent photo-promoted thermal catalytic activity and stability,but the enhanced catalytic activity was lower than that of 0 RT-H.Based on the characterization results,it is proposed that both the surface oxygen vacancies(Vos)(activating CO_(2))and the metallic Ru nanoparticles(activating H_(2))were mainly responsible for CO_(2)methanation.For 0 RT,H_(2)pretreatment and subsequent UV irradiation did not promote the formation of Vos,resulting in low catalytic activity.For 3 RT,on the one hand,H_(2)pretreatment promoted the formation of Vos,which were regenerated under UV irradiation;on the other hand,the photogenerated electrons from TiO_(2)transferred to Ru to maintain the metallic Ru nanoparticles.Both behaviors promoted the activation of CO_(2)and H_(2)and enhanced CO_(2)methanation.Moreover,the photogenerated holes favored the dissociated H at Ru migrating to TiO_(2),also promoting CO_(2)methanation.These behaviors occurring on 3 RT-H may be attributed to the suitable metal-support interaction between the Ru nanoparticles and TiO_(2){001},resulting in the easy activation of lattice oxygen in TiO_(2)to Vos.With reference to the analysis of intermediates,a photo-thermal reaction mechanism is proposed for the Ru/TiO_(2){001}facet sample. 展开更多
关键词 Photo-thermal CO_(2)reduction Oxygen vacancy Ru/TiO_(2) Metal-support interaction
下载PDF
UV Laser Regulation of Surface Oxygen Vacancy of CoFe2O4 for Enhanced Oxygen Evolution Reaction 被引量:1
6
作者 Zhen-hong Xiao Dao-chuan Jiang +5 位作者 Han Xu Jing-tian Zhou Qi-zhong Zhang Ping-wu Du Zhen-lin Luo Chen Gao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期691-694,736,共5页
Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determinati... Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds. 展开更多
关键词 Oxygen evolution reaction Spinel oxide Transition metal oxide Laser irradiation Oxygen vacancy
下载PDF
Well Dispersed SnO2 Nanoclusters Preparation and Modulation of Metal-Insulator Transition Induced by Ionic Liquid
7
作者 Zhong-hu Liu Xing Chen +8 位作者 Yi-yu Zhu Si-han Zhao Zhi-qiang Wang Feng Wang Qiang-qiang Meng Lei Zhu Qin-fang Zhang Bao-lin Wang Le-le Fan 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第2期248-252,I0003,共6页
Tin dioxide (SnO2) has attracted broad interest due to its particular gas-sensor property. Nano- or atom-scale SnO2 material has always been the aim in order to ultimately improve the sensitivity. However, until now, ... Tin dioxide (SnO2) has attracted broad interest due to its particular gas-sensor property. Nano- or atom-scale SnO2 material has always been the aim in order to ultimately improve the sensitivity. However, until now, it remains difficult to synthesize SnO2 nanoclusters by using traditional methods. In the present work, we have achieved the preparation of SnO2 nanoclusters by using the cluster beam deposition technique. The obtained nanoclusters were well characterized by high resolution transmission electron microscope HR-TEM. Results indicated the formation of the well-dispersed SnO2 nanoclusters with uniform size distribution (5-7 nm). Furthermore, an obvious metal insulator transition was observed by gating with ionic liquid. Combined with theory calculation, the corresponding mechanism was systematically analyzed from oxygen vacancy induced electron doping. 展开更多
关键词 SnO2 nanoclusters Ionic liquid Oxygen vacancy Metal-insulator transition
下载PDF
^(15)N/^(14)N Isotopic Exchange in the Dissociative Adsorption of N_(2) on Tantalum Nitride Cluster Anions Ta_(3)N_(3)
8
作者 Zi-Yu Li Li-Hui Mou +2 位作者 Gui-Duo Jiang Qing-Yu Liu Sheng-Gui He 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第1期77-85,I0062,I0063,共11页
Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mec... Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mechanisms at a molecular level between reactive nitride species and N_(2) remain unclear at elevated temperature,which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system.Herein,the ^(15)N/^(14)N isotopic exchange in the reaction between tantalum nitride cluster anions Ta_(3)^(14)N_(3)^(-) and ^(15)N_(2) leading to the regeneration of ^(14)N_(2)/^(14)N^(15)N was observed at elevated temperature(393-593 K)using mass spectrometry.With the aid of theoretical calculations,the exchange mechanism and the effect of temperature to promote the dissociation of N_(2) on Ta_(3)N_(3)^(-) were elucidated.A comparison experiment for Ta_(3)^(14)N_(4)^(-)/^(15)N_(2) couple indicated that only desorption of ^(15)N_(2) from Ta_(3)^(14)N_(4)^(15)N_(2)^(-) took place at elevated temperature.The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species.This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation. 展开更多
关键词 Temperature effect Dinitrogen activation Transition metal nitrides Nitrogen vacancy Isotopic exchange
下载PDF
Metal-induced oxygen vacancies on Bi_(2)WO_(6)for efficient CO_(2) photoreduction 被引量:3
9
作者 Yinghui Wang Tong Chen +2 位作者 Fang Chen Ruofei Tang Hongwei Huang 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3497-3503,共7页
Semiconductor-based photocatalysis for efficient solar energy conversion is an ideal strategy to tackle the growing global energy and environmental crisis.However,the development of photocatalysis is still limited by ... Semiconductor-based photocatalysis for efficient solar energy conversion is an ideal strategy to tackle the growing global energy and environmental crisis.However,the development of photocatalysis is still limited by problems such as low utilization of visible light,low efficiency of charge transfer and separation,and insufficient reactive sites.Herein,Au nanoparticles(NPs)were deposited on the surface of Bi_(2)WO_(6)by a one-step reduction method,which simultaneously induced the formation of oxygen vacancies(OVs)on the surface of Bi_(2)WO_(6).The OVs concentration is found to be increased with the increase of Au loading.Au NPs and OVs improve the light absorption and facilitate the separation and transport of the photogenerated carriers.In addition,OVs act synergistically with the nearby metal active sites to optimize the adsorption energy of reactants on the catalyst surface,changing the adsorption form of CO_(2)molecules on the catalyst surface.The as-synthesized photocatalyst achieved a photocatalytic performance of up to 34.8μmol g^(−1)h^(−1)of CO_(2)reduction to CO without sacrificial agent in a gas-solid system,which is 9.4 times higher than that of the pristine Bi_(2)WO_(6).This work may further deepen our understanding on the relationship between metal NPs and OVs,and their combined role in photocatalysis. 展开更多
关键词 Au nanoparticles oxygen vacancies charge separation reactive sites CO_(2)photoreduction
原文传递
Oxygen vacancies boosting ultra-stability of mesoporous ZnO-CoO@N-doped carbon microspheres for asymmetric supercapacitors 被引量:7
10
作者 Di Yao Fulei Wang +4 位作者 Wu Lei Yan Hua Xifeng Xia Jinping Liu Qingli Hao 《Science China Materials》 SCIE EI CSCD 2020年第10期2013-2027,共15页
Long-term cycling stability of pseudocapacitive materials is pursued for high-energy supercapacitors.Herein,the mesoporous zinc-cobalt oxide heterostructure@nitrogendoped carbon(ZnO-CoO@NC)microspheres with abundant o... Long-term cycling stability of pseudocapacitive materials is pursued for high-energy supercapacitors.Herein,the mesoporous zinc-cobalt oxide heterostructure@nitrogendoped carbon(ZnO-CoO@NC)microspheres with abundant oxygen vacancies are self-assembled through a hydrothermal method combined with an annealing post-treatment.The multifunctional polyvinyl pyrrolidone(PVP)is used as a structure-directing agent,the precursor of NC and the initiator of abundant oxygen vacancies in zinc-cobalt oxide microspheres.XPS demonstrates the generation of surface oxygen vacancies resulted from the reduction effect of conductive NC,and further confirms the weaker interaction between the metal ions and oxygen atoms.As a result,the electrode based on ZnO-CoO@NC in 2 mol L^-1 KOH shows enhanced capacitive performance with an excellent cycle stability of 92%retention of the initial capacitance after 40,000 charge-discharge cycles at 2 A g^-1,keeping the morphology unchanged.The assembled asymmetric supercapacitor,graphene//ZnO-CoO@NC,also performs good cyclic stability with 94%capacitance retention after 10,000 cycles at 2 A g^-1.The remarkable electrochemical performance of the self-assembled ZnO-CoO@NC composite is attributed to the mesoporous architecture,abundant oxygen vacancies,conductive ZnO scaffold for CoO crystals forming heterostructure of ZnO-CoO and the high conductive NC layer covering outside of the multi-metal oxide nanoparticles.Hence,the ZnO-CoO@NC holds great promise for high-performance energy storage applications. 展开更多
关键词 supercapacitor zinc oxide cobaltous oxide doped carbon cycling stability HETEROSTRUCTURE
原文传递
Defect engineered 2D mesoporous Mo-Co-O nanosheets with crystalline-amorphous composite structure for efficient oxygen evolution 被引量:3
11
作者 Chuansheng He Xiaochen Hu +6 位作者 Jia Wang Lingzheng Bu Changhong Zhan Bingyan Xu Leigang Li Yunchao Li Xiaoqing Huang 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3470-3478,共9页
Two-dimensional(2D)mesoporous metal-oxide(hydroxide)nanomaterials with defects are promising towards the realization of efficient electrocatalysis.Herein,we report a facile and effective one-pot solvothermal route to ... Two-dimensional(2D)mesoporous metal-oxide(hydroxide)nanomaterials with defects are promising towards the realization of efficient electrocatalysis.Herein,we report a facile and effective one-pot solvothermal route to synthesize mesoporous Mo_(x)-Co-O hybrid nanosheets(NSs)which is composed of crystalline Mo_(4)O_(11) and amorphous cobalt hydroxide.Due to the corrosion of 1-octylamine at high temperatures,abundant mesoporous holes are created in situ over the Mo_(x)-Co-O hybrid NSs during the solvothermal process,which is beneficial to increasing the electrochemical surface area.The dimension of the Mox-Co-O NSs,size of mesoporous and the concentration of defects can be easily modulated by controlling the molar ratio of Mo/Co.Electrochemical measurements reveal that the 2D mesoporous Mo_(x)-Co-O NSs show an excellent activity for the oxygen evolution reaction with the highest catalytic activity of η_(10)=276 mV at 10 mA cm^(−2)in 1 mol L^(−1)KOH.Enhanced adsorption of intermediates and abundant oxygen vacancies achieved by appropriate Mo doping are the two main factors that contribute to the excellent catalytic activity of Mo_(0.2)-Co-O NSs.This work,with the construction of 2D metal-oxide(hydroxide)crystallineamorphous nanomaterials possessing abundant holes,oxygen vacancies and enhanced adsorption of intermediates,provides important insight on the design of more efficient catalysts. 展开更多
关键词 MESOPOROUS oxygen vacancy AMORPHOUS NANOSHEET oxygen evolution reaction
原文传递
Defects production and mechanical properties of typical metal engineering materials under neutron irradiation
12
作者 LIU Jian TANG XiaoBin +3 位作者 CHEN FeiDa HUANG Hai LI Huan YANG YaHui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1753-1759,共7页
Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induce... Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82 H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength. 展开更多
关键词 Monte Carlo molecular dynamics neutron irradiation displacement damage rate mechanical properties
原文传递
A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide 被引量:9
13
作者 Xuya Xiong Zhao Cai +10 位作者 Daojin Zhou Guoxin Zhang Qian Zhang Yin Jia Xinxuan Duan Qixian Xie Shibin Lai Tianhui Xie Yaping Li Xiaoming Sun Xue Duan 《Science China Materials》 SCIE EI CSCD 2018年第7期939-947,共9页
Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a pro... Exploring efficient and cost-effective electro- catalysts for oxygen evolution reaction (OER) is critical to water splitting. While nickel-iron layered double hydroxide (NiFe LDH) has been long recognized as a promising non- precious electrocatalyst for OER, its intrinsic activity needs further improvement. Herein, we design a highly-efficient oxygen evolution electrode based on defective NiFe LDH na- noarray. By combing the merits of the modulated electronic structure, more exposed active sites, and the conductive elec- trode, the defective NiFe LDH electrocatalysts show a low onset potential of 1.40 V (vs. RHE). An overpotential of only 200 mV is required for 10 mA cm-2, which is 48 mV lower than that of pristine NiFe-LDH. Density functional theory plus U (DFT+U) calculations are further employed for the origin of this OER activity enhancement. We find the introduction of oxygen vacancies leads to a lower valance state of Fe and the narrowed bandgap, which means the electrons tend to be ea- sily excited into the conduction band, resulting in the lowered reaction overpotential and enhanced OER performance. 展开更多
关键词 oxygen evolution reaction layered double hydroxide oxygen vacancy ELECTROCATALYSIS
原文传递
Phosphorus-doped MoS_(2) with sulfur vacancy defects for enhanced electrochemical water splitting 被引量:3
14
作者 Hongyao Xue Alan Meng +3 位作者 Chunjun Chen Hongyan Xue Zhenjiang Li Chuansheng Wang 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期712-720,共9页
MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is una... MoS_(2)is a promising electrocatalyst because of its natural abundance and outstanding electrochemical stability.However,the poor conductivity and low activity limit its catalytic performance;furthermore,MoS_(2)is unable to satisfy the requirements of most industrial applications.In this study,to obtain a P-doped MoS_(2)catalyst with S vacancy defects,P is inserted into the MoS_(2)matrix via a solid phase ion exchange at room temperature.The optimal P-doping amount is 11.4 wt%,and the resultant catalyst delivers excellent electrocatalytic properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)with the corresponding overpotentials of 93 and 316 mV at 10 mA cm^(-2) in an alkaline solution;these values surpass the overpotentials of most previously reported MoS_(2)-based materials.Theoretical calculations and results demonstrate that the synergistic effect of the doped P,which forms active centers in the basal plane of MoS_(2),and S vacancy defects caused by P doping intensifies the intrinsic electronic conductivity and electrocatalytic activity of the catalyst.Density functional theory calculations demonstrate that P optimizes the free energy of the MoS_(2)matrix for hydrogen adsorption,thereby considerably increasing the intrinsic activity of the doped catalyst for the HER compared with that observed from pristine MoS_(2).The enhanced catalytic activity of P-doped MoS_(2)for the OER is attributed to the ability of the doped P which facilitates the adsorption of hydroxyl and hydroperoxy intermediates and reduces the reaction energy barrier.This study provides a new environmentally friendly and convenient solid-phase ion exchange method to improve the electrocatalytic capability of two-dimensional transition-metal dichalcogenides in largescale applications. 展开更多
关键词 molybdenum disulfide phosphorus doping sulfur vacancy defects overall water splitting electron redistribution density functional theory calculations
原文传递
Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting 被引量:7
15
作者 Zhiyuan Wang Jia Yang +6 位作者 Wenyu Wang Fangyao Zhou Huang Zhou Zhenggang Xue Can Xiong Zhen-Qiang Yu Yuen Wu 《Science China Materials》 SCIE EI CAS CSCD 2021年第4期861-869,共9页
A low-cost,highly efficient and strong durable bifunctional electrocatalyst is crucial for electrochemical overall water splitting.In this paper,a self-templated strategy combined with in-situ phosphorization is appli... A low-cost,highly efficient and strong durable bifunctional electrocatalyst is crucial for electrochemical overall water splitting.In this paper,a self-templated strategy combined with in-situ phosphorization is applied to construct hollow structured bimetallic cobalt-nickel phosphide(CoNiP_(x))nanocages.Owing to their unique hollow structure and bimetallic synergistic effects,the as-synthesized CoNiP_(x)hollow nanocages exhibit a high electrocatalytic activity and stability towards hydrogen evolution reaction in all-pH electrolyte and a remarkable electrochemical performance for oxygen evolution reaction in 1.0 mol L^(-1)KOH.Meanwhile,with the bifunctional electrocatalyst in both anode and cathode for overall water splitting,a low voltage of 1.61 V and superior stability are achieved at a current density of 20 mA cm^(-2). 展开更多
关键词 bimetallic cobalt-nickel phosphide hollow nanocage electrochemical water splitting all-pH electrolyte
原文传递
Structure-induced hollow Co3O4 nanoparticles with rich oxygen vacancies for efficient CO oxidation
16
作者 Zhijie Chen Yajing Wang +3 位作者 Qiannan Liang Liyu Chen Weiteng Zhan Yingwei Li 《Science China Materials》 SCIE EI CSCD 2020年第2期267-275,共9页
Co3O4 has been considered as one kind of promising catalysts for the oxidation of CO. According to the Mars-van Krevelen mechanism, oxygen vacancies of Co3O4 play a significant role in catalytic activity. Herein, we r... Co3O4 has been considered as one kind of promising catalysts for the oxidation of CO. According to the Mars-van Krevelen mechanism, oxygen vacancies of Co3O4 play a significant role in catalytic activity. Herein, we report a novel structure-induced strategy to develop hollow Co3O4 with rich oxygen vacancies for efficient oxidation of CO. Through a reduction-oxidation pyrolysis process, the metal-organic frameworks(MOFs) precursor(i.e., ZIF-67) is transformed into H-Co3O4@H-C, in which hollow Co3O4(H-Co3O4) nanoparticles(NPs) are embedded in hollow carbon(H-C) shell.The hollow Co3O4 NPs feature rich oxygen vacancies and finish a complete conversion of CO at 130°C, which is much lower than that of solid Co3O4(the temperature of full CO conversion T100=220°C). Besides, the hollow carbon shell could also reduce the diffusion resistance during the oxidation process. Benefiting from the unique hollow structures,H-Co3O4@H-C even shows comparable activity to noble metal catalysts under high weight hourly space velocities(WHSVs)up to 240,000 mL h^–1 gcat.^–1. Furthermore, the H-Co3O4@H-C catalyst also shows good durability with only a slight decline after the reaction has been operated for 24 h. 展开更多
关键词 CO oxidation metal-organic frameworks cobalt oxide hollow structure oxygen vacancy
原文传递
Electronic structure evolutions driven by oxygen vacancy in SrCoO3-x films
17
作者 赵佳丽 罗毅 +16 位作者 王嘉鸥 钱海杰 刘晨 何旭 张庆华 黄河意 张兵兵 李顺芳 郭尔佳 葛琛 杨铁莹 李晓龙 何萌 谷林 金奎娟 奎热西·依布拉欣 郭海中 《Science China Materials》 SCIE EI CSCD 2019年第8期1162-1168,共7页
Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalys... Ionic defects, such as oxygen vacancies, play a crucial role in the magnetic and electronic states of transition metal oxides. Control of oxygen vacancy is beneficial to the technological applications, such as catalysis and energy conversion. Here, we investigate the electronic structure of SrCoO3-x as a function of oxygen content(x). We found that the hybridization extent between Co 3d and O 2p increased with the reduction of oxygen vacancies. The valence band maximum of SrCoO2.5+δ has a typical O 2p characteristic. With further increasing oxygen content, the Co ions transform from a high spin Co3+ to an intermediate spin Co4+, resulting in a transition of SrCoO3-x from insulator to metal. Our results on the electronic structure evolution with the oxygen vacancies in SrCoO3-x not only illustrate a spin state transition of Co ions,but also indicate a perspective application in catalysis and energy field. 展开更多
关键词 oxygen vacancies SrCoO3-x electronic structure evolution resonant photoemission spectra
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部