The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by us...The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.展开更多
Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we rep...Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.展开更多
基金Project(21476269)supported by the National Natural Science Foundation of ChinaProject(14JJ2014)supported by Natural Science Foundation of Hunan Province,China
文摘The assembly of layered double hydroxides (LDHs) and multi-walled carbon nanotubes (MWCNTs) nanohybrids was prepared as MWCNTs/LDHs by co-precipitation. The synthesized nanoparticles were characterized by using XRD, FT-IR, SEM/EDX, TGA and BET. XRD and SEM studies proved that MWCNTs phases did not enter into the interlayers of LDHs, they dispersed over the LDHs surface homogeneously. BET results showed that MWCNTs/LDHs possessed hierarchically porous nanostructure with large surface area (124.974 m^2/g) and great pore volume (0.604 cm^3/g). Batch experiments were conducted to study the adsorption efficiency of Congo red (CR). It was worthy to note that MWCNTs/LDHs exhibited excellent adsorption performance with the maximum CR adsorption capacity of 595.8 mg/g in weak acidic environment. The adsorption kinetics and isotherm parameters can be well described by the pseudo-second-order and the Langmuir isotherm models, respectively. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic.
文摘Transfer printing of nanomaterials onto target substrates has been widely used in the fabrication of nanodevices, but it remains a challenge to fully avoid contamination introduced in the transfer process. Here we report a metal-film- assisted method to realize an ultra-clean transfer of single-walled carbon nanotubes (SWCNTs) mediated by poly(methyl methacrylate) (PMMA). The amount of PMMA residue can be greatly reduced due to its strong physical adhesion to the metal film, leading to ultra-clean surfaces of both the SWCNTs and the substrates. This metal-film-assisted transfer method is efficient, nondestructive, and scalable. It is also suitable for the transfer of graphene and other nanostructures. Furthermore, the relatively low temperature employed allows this technique to be compatible with nanomaterial-based flexible electronics.