The field of stretchable electronics mainly includes electronic products conformal with tissues,being integrated into skin or clothing.Since these products need to work during deformation,their requirements for materi...The field of stretchable electronics mainly includes electronic products conformal with tissues,being integrated into skin or clothing.Since these products need to work during deformation,their requirements for materials focus on stretchability and conductivity.Liquid metals are excellent materials with these properties.However,liquid metals have extremely high surface tension at room temperature,which will spontaneously form a spherical shape and are difficult to form the shape required by stretchable devices,which is the biggest obstacle to their development in this emerging field.Therefore,the emphasis is placed on the principle of overcoming the high surface tension in this review,and various methods of using liquid metals to fabricate stretchable electronic devices based on these principles have been linked.Liquid metals show promise in the convenience of sensing,energy harvesting,etc.The existing challenges and opportunities are also discussed here.展开更多
We investigate the low-energy electronic structure ofa Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, t...We investigate the low-energy electronic structure ofa Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Wey[ point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.展开更多
基金supported by the National Natural Science Foundation of China(52173237 and 51903068)the Natural Science Foundation of Heilongjiang Province,China(YQ2020E001)。
文摘The field of stretchable electronics mainly includes electronic products conformal with tissues,being integrated into skin or clothing.Since these products need to work during deformation,their requirements for materials focus on stretchability and conductivity.Liquid metals are excellent materials with these properties.However,liquid metals have extremely high surface tension at room temperature,which will spontaneously form a spherical shape and are difficult to form the shape required by stretchable devices,which is the biggest obstacle to their development in this emerging field.Therefore,the emphasis is placed on the principle of overcoming the high surface tension in this review,and various methods of using liquid metals to fabricate stretchable electronic devices based on these principles have been linked.Liquid metals show promise in the convenience of sensing,energy harvesting,etc.The existing challenges and opportunities are also discussed here.
基金supported by the National Natural Science Foundation of China(Grants Nos.11747122,11274364,and 11574007)the National Basic Research Program of China(Grant Nos.2017YFA0303301,and2015CB921102)+1 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2018PA007)the Doctoral Foundation of University of Jinan(Grant No.160100147)
文摘We investigate the low-energy electronic structure ofa Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Wey[ point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics.