Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very diff...Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.展开更多
Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft rob...Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft robot area. Recently the amoeba-like transformations of LM on the graphite surface are discovered, which present a promising future for the design and assemble of self-fueled actuators with dendritically deformable body. It appears that the surface tension of the LM can be significantly reduced when it contacts graphite surface in alkaline solution. Clearly, the specific surface should play a vital role in inducing these intriguing behaviors, which is valuable and inspiring in soft robot design. However, the information regarding varied materials functions underlying these behaviors remains unknown. To explore the generalized effects of surface materials in those intriguing behavior, several materials including glass, graphite, nickel and copper oxides(CuO) were comparatively investigated as substrate surfaces.Important results were obtained that only LM amoeba transformations were observed on graphite and CuO surfaces. In order to identify the proper surface condition for LM transformation, the intrinsic properties of substrate surfaces, such as the surface charge and roughness, as well as the specific interaction with LM like wetting behavior and mutual locomotion etc., were characterized. The integrated results revealed that LM droplet appears more likely to deform on surfaces with higher positive surface charge density, higher roughness and less bubble generation on them. In addition, another surface material,CuOx, is identified to own similar ability to graphite, which is valuable in achieving amoeba-like transformation. Moreover, this study offers a fundamental understanding of the surface properties in realizing LM amoeba transformations, which would shed light on packing and structure design of liquid metal-based soft device within multi-material system.展开更多
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
文摘Electrochemical machining(ECM) is one of the important non-traditional machining processes,which is used for machining of difficult-to-machine materials and intricate profiles.Being a complex process,it is very difficult to determine optimal parameters for improving cutting performance.Metal removal rate and surface roughness are the most important output parameters,which decide the cutting performance.There is no single optimal combination of cutting parameters,as their influences on the metal removal rate and the surface roughness are quite opposite.A multiple regression model was used to represent relationship between input and output variables and a multi-objective optimization method based on a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was used to optimize ECM process.A non-dominated solution set was obtained.
基金supported by the Dean’s Research Funding from the Chinese Academy of Sciences, Beijing Municipal Science and Technology Funding(Z151100003715002)the National Natural Science Foundation of China (61307065) and the National Key Research and Development Program of China (2016YFA0200500)
文摘Liquid metals(LM) such as eutectic gallium-indium and gallium-indium-tin are important functional liquid-state metal materials with many unique properties, which have attracted wide attentions especially from soft robot area. Recently the amoeba-like transformations of LM on the graphite surface are discovered, which present a promising future for the design and assemble of self-fueled actuators with dendritically deformable body. It appears that the surface tension of the LM can be significantly reduced when it contacts graphite surface in alkaline solution. Clearly, the specific surface should play a vital role in inducing these intriguing behaviors, which is valuable and inspiring in soft robot design. However, the information regarding varied materials functions underlying these behaviors remains unknown. To explore the generalized effects of surface materials in those intriguing behavior, several materials including glass, graphite, nickel and copper oxides(CuO) were comparatively investigated as substrate surfaces.Important results were obtained that only LM amoeba transformations were observed on graphite and CuO surfaces. In order to identify the proper surface condition for LM transformation, the intrinsic properties of substrate surfaces, such as the surface charge and roughness, as well as the specific interaction with LM like wetting behavior and mutual locomotion etc., were characterized. The integrated results revealed that LM droplet appears more likely to deform on surfaces with higher positive surface charge density, higher roughness and less bubble generation on them. In addition, another surface material,CuOx, is identified to own similar ability to graphite, which is valuable in achieving amoeba-like transformation. Moreover, this study offers a fundamental understanding of the surface properties in realizing LM amoeba transformations, which would shed light on packing and structure design of liquid metal-based soft device within multi-material system.