We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aque...We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.展开更多
Critical heat transfer problems are discussed in the context of the operation of a spallation source target, which represents a first demonstration of the feasibility of an innovative concept for generating energy usi...Critical heat transfer problems are discussed in the context of the operation of a spallation source target, which represents a first demonstration of the feasibility of an innovative concept for generating energy using a particle accelerator. Within the framework of the umbrella project MEGAPIE, an R&D support group was organized to take responsibility for target cooling. This involved the use of advanced numerical methods - Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) - validated against suitable experimental data, and by means of appropriate benchmarking exercises. The design studies using CFD resulted in an optimum flow configuration being defined for the coolant circulation. Flow visualization tests were undertaken using a glass/water test section, with the velocity field mapped using optical and ultrasonic measuring techniques. These were followed by heat transfer tests, using the actual target materials (lead-bismuth-eutectic coolant and steel confinement). Further CFD/FEM work to analyze operational transients and accident sequences was also carded out, and is described in the paper.展开更多
基金supported by Research Funding of Chinese Academy of Sciences and partially by the National Natural Science Foundation of China(51376102)
文摘We disclosed the interiorly driven macroscopic Brownian motion behavior of self-powered liquid metal motors. Such tiny motors in millimeter scale move randomly at a velocity magnitude of centimeters per second in aqueous alkaline solution, well resembling the classical Brownian motion. However, unlike the existing phenomena, where the particle motions were caused by collisions from the surrounding molecules, the current random liquid metal motions are internally enabled and self-powered, along with the colliding among neighboring motors, the substrate and the surrounding electrolyte molecules. Through uniformly dissolving only 1% (mass percentage) A1 into GaInl0, many tiny motors can be quickly fabricated and activated to take the Brownian-like random motions. Further, we introduced an experimental approach of using optical image contrast, which works just like the Wilson cloud chamber, to distinctively indicate the motor trajectory resulted from the generated hydrogen gas stream. A series of unusual complicated multi-phase fluid mechanics phenomena were observed. It was also identified that the main driving factor of the motors comes from the H2 bubbles generated at the bottom of these tiny motors, which is different from the large size self-fueled liquid metal machine. Several typical mechanisms for such unconventional Brownian-like motion phenomena were preliminarily interpreted.
文摘Critical heat transfer problems are discussed in the context of the operation of a spallation source target, which represents a first demonstration of the feasibility of an innovative concept for generating energy using a particle accelerator. Within the framework of the umbrella project MEGAPIE, an R&D support group was organized to take responsibility for target cooling. This involved the use of advanced numerical methods - Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) - validated against suitable experimental data, and by means of appropriate benchmarking exercises. The design studies using CFD resulted in an optimum flow configuration being defined for the coolant circulation. Flow visualization tests were undertaken using a glass/water test section, with the velocity field mapped using optical and ultrasonic measuring techniques. These were followed by heat transfer tests, using the actual target materials (lead-bismuth-eutectic coolant and steel confinement). Further CFD/FEM work to analyze operational transients and accident sequences was also carded out, and is described in the paper.