For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equil...For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.展开更多
The purpose of this work is to present state of the art mass balances closing strategies in ore treatment plants to report metal accounting in a reliable manner. The current methodology is based on usage of an expert ...The purpose of this work is to present state of the art mass balances closing strategies in ore treatment plants to report metal accounting in a reliable manner. The current methodology is based on usage of an expert system which seizes and filters the plant data, analyses situations of equipment stops and mostly instruments failures. It is still possible to internally create a strategy to check the data of an instrument failure. The system is coupled to software with a Lagrangian model of mass balance closure that receives the pre-treated data. Thus, the data goes through filtering and reconciling processes to generate a reliable mass balance of the ore treatment plant. This made it possible to obtain a system that is able to tell the real productivity of an ore plant through reliable mass balances. Residence times on equipment are critical to the balance, thus, they require good logic to eliminate errors due to the characteristics of non-steady state. Among the next challenges is the inclusion of a soft sensor as a replacement of an instrument required for mass balance closure.展开更多
In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of...In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of heavy metals. The inter- body of geochemical cycle of heavy metals includes soil, gas as well as water body, and the interbody of biological cycle of heavy metals includes environment, plant, microorganisms and animals. As to macro-cycle, transportation character in each interbody is different. Heavy metal circulation in different interbody interacts with each other and is in dynamic balance. Heavy metals in soil include two parts, i.e. active and inert forms, which are in dynamic equilibrium. This equilibrium may be affected by different physicochemical factors. Heavy metal content at different soil depth reflects historical accumulation level of heavy metal. In contrast to agri- cultural eco-system itself, industrial and urban activities are of great menace. Fluvial transport and atmospheric input are significant pathways of heavy metal circulation. Sludge plays an accumulative role of heavy metals, and can release its heavy met- als to water body causing secondary pollution. Balance of heavy metal immobiliza- tion and release is interrupted by physicochemical characters and microbial activity. Temperature can influence atmospheric heavy metal content, and volatile heavy meal precipitation is an indLspensable source in soil and water body. In regard to micro-cycle, plants is the main part in heavy metal cycle, microorganisms play roles in accelerator and animals in recipient. Specific transportation and assigned location of heavy metal in plants are adopted to keep internal heavy metal equilibrium.展开更多
Analytical equations are presented herein to predict the penetration of semi-infinite metallic targets struck normally by long rods at high velocities for Yp<S where Yp is the rod strength and S is the static targe...Analytical equations are presented herein to predict the penetration of semi-infinite metallic targets struck normally by long rods at high velocities for Yp<S where Yp is the rod strength and S is the static target resistance.The equations are derived based on energy balance method.It is assumed that the kinetic energy loss of a long rod is related to the energy dissipated by the plastic deformations in the target,the energy consumed by the long-rod penetrator itself and the energy carried by the eroded rod debris.Secondary penetration is also examined in the present paper due to the fact that the eroded rod debris forms a tube which can penetrate the target further if the density of the rod is greater than that of the target and the impact velocity is high enough.The present analytical equation is found to be in good agreement with the experimental data for a wide range of impact velocities.展开更多
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, China (No. 5022505)the National Natural Science Foundation of China (No. 40771128)
文摘For the past 20 years, numerous studies have been carried out on the application of equilibrium partitioning approach (EqPA) for the derivation of sediment quality guidelines (SQGs). However, for metals, few Equilibrium-partitioning- based numerical SQGs have been developed or are currently available because of the confounding factors mediating the bioavailability of metals. A study was conducted at Dianchi Lake, which is a heavily eutrophicated lake on the Yunnan- Guizhou Plateau, China with the focus on the measurement of partitioning coefficient (Kp) and SQGs derivation and normalization to acid volatile sulfide (AVS), fine material, and organic carbon. Using new normalization methods, SQGs were formulated for seven metals including copper, zinc, lead, cadmium, chromium, mercury, and arsenic in Dianchi Lake. In Dianchi Lake sediments, the fine material contributed 25.4%-36.0% to the SQG values, with the largest contribution to the SQG value of mercury; AVS contributed 2.9%-75.0% to the SQG values, with the largest contribution to the SQG value of cadmium. This indicated that the fine material and the AVS were the most important controlling factors to the bioavailability of mercury and caximium, respectively. The contribution of total organic carbon (TOC) to the SQG values of copper and leaxi was 3.8% and 7.1%, respectively, indicating that at relatively lower concentrations, the contribution of TOC was not significant. In addition to normalization methods, appropriate procedures for the application of EqPA including sample collection, storage, and analysis are also essential to improve the reliability of SQGs. The normalized Dianchi Lake SQGs were higher than most of the empirically based SQGs developed in North America, but lower than Hong Kong interim SQGs except for cadmium and arsenic. The differences could be attributed to the approaches used for derivation of SQGs and the water quality criteria adopted and the differences in the physical and chemical characteristics of the sediments.
文摘The purpose of this work is to present state of the art mass balances closing strategies in ore treatment plants to report metal accounting in a reliable manner. The current methodology is based on usage of an expert system which seizes and filters the plant data, analyses situations of equipment stops and mostly instruments failures. It is still possible to internally create a strategy to check the data of an instrument failure. The system is coupled to software with a Lagrangian model of mass balance closure that receives the pre-treated data. Thus, the data goes through filtering and reconciling processes to generate a reliable mass balance of the ore treatment plant. This made it possible to obtain a system that is able to tell the real productivity of an ore plant through reliable mass balances. Residence times on equipment are critical to the balance, thus, they require good logic to eliminate errors due to the characteristics of non-steady state. Among the next challenges is the inclusion of a soft sensor as a replacement of an instrument required for mass balance closure.
文摘In order to control heavy metal pollution effectively, this paper reviews heavy metal source and transport characteristics in heavy metal circulation in bio- sphere, including geochemical cycle and biological cycle of heavy metals. The inter- body of geochemical cycle of heavy metals includes soil, gas as well as water body, and the interbody of biological cycle of heavy metals includes environment, plant, microorganisms and animals. As to macro-cycle, transportation character in each interbody is different. Heavy metal circulation in different interbody interacts with each other and is in dynamic balance. Heavy metals in soil include two parts, i.e. active and inert forms, which are in dynamic equilibrium. This equilibrium may be affected by different physicochemical factors. Heavy metal content at different soil depth reflects historical accumulation level of heavy metal. In contrast to agri- cultural eco-system itself, industrial and urban activities are of great menace. Fluvial transport and atmospheric input are significant pathways of heavy metal circulation. Sludge plays an accumulative role of heavy metals, and can release its heavy met- als to water body causing secondary pollution. Balance of heavy metal immobiliza- tion and release is interrupted by physicochemical characters and microbial activity. Temperature can influence atmospheric heavy metal content, and volatile heavy meal precipitation is an indLspensable source in soil and water body. In regard to micro-cycle, plants is the main part in heavy metal cycle, microorganisms play roles in accelerator and animals in recipient. Specific transportation and assigned location of heavy metal in plants are adopted to keep internal heavy metal equilibrium.
基金supported by the National Natural Science Foundation of China(Grant No.11172298)
文摘Analytical equations are presented herein to predict the penetration of semi-infinite metallic targets struck normally by long rods at high velocities for Yp<S where Yp is the rod strength and S is the static target resistance.The equations are derived based on energy balance method.It is assumed that the kinetic energy loss of a long rod is related to the energy dissipated by the plastic deformations in the target,the energy consumed by the long-rod penetrator itself and the energy carried by the eroded rod debris.Secondary penetration is also examined in the present paper due to the fact that the eroded rod debris forms a tube which can penetrate the target further if the density of the rod is greater than that of the target and the impact velocity is high enough.The present analytical equation is found to be in good agreement with the experimental data for a wide range of impact velocities.