In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed b...In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed by hot-rolling, annealing, and quenching. The microstructure and mechanical properties were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-region X-ray diffractometry(MRXRD), nanoindentation, and in-situ scanning electron microscopy tensile testing. The results show that the Ti-18 Nb consists of Ti-enriched, diffusion and Nb-enriched zones, and the sharp Nb gradient across different zones leads to inhomogeneous distribution of phase and mechanical properties. A remarkable finding is that the diffusion zones not only enable the cooperative deformation between the brittle Ti-enriched zones and the ductile Nb-enriched zones but also act as the crack-arresters to prevent the local cracks in the Ti-enriched zones from further propagating across the composite.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy u...In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.展开更多
To investigate the dynamic mechanical behavior of AZ31 Mg alloy, dynamic compression was carried out using a split Hopkinson pressure bar (5HPB) apparatus at strain rates up to 2.0 × 10^3 s^-1, and dynamic hard...To investigate the dynamic mechanical behavior of AZ31 Mg alloy, dynamic compression was carried out using a split Hopkinson pressure bar (5HPB) apparatus at strain rates up to 2.0 × 10^3 s^-1, and dynamic hardness was tested employ- ing a dynamic hardness device at room temperature. Microstructural characteristic was analysed by optical microscopy. The dynamic compression results demonstrate that AZ31 Mg alloy exhibits obvious yield phenomena and strain hardening behav- ior at high strain rates. The basically same curvature of stress-strain curves shows a similar strain hardening rate. The dy- namic yield strength changes little, and the peak stress increases with the strain rates. The dynamic hardness test results indi- cate that the dynamic mechanical properties of AZ31 alloy sheet are anisotropic. The dynamic hardness increases slowly with average strain for the 0° and 45° oriented samples. For the 90° oriented sample, dynamic hardness with strain increases rapidly first and then decreases when the strain is more than 0.14. An examination by optical microscopy after high strain rate deformation reveals the occurrence of twinning, and the twin area percentage escalates with the strain rate increasing.展开更多
Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and...Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.展开更多
This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analy...This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.展开更多
基金Project(51625404)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProjects(51604104,51504295)supported by the National Natural Science Foundation of China
文摘In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed by hot-rolling, annealing, and quenching. The microstructure and mechanical properties were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-region X-ray diffractometry(MRXRD), nanoindentation, and in-situ scanning electron microscopy tensile testing. The results show that the Ti-18 Nb consists of Ti-enriched, diffusion and Nb-enriched zones, and the sharp Nb gradient across different zones leads to inhomogeneous distribution of phase and mechanical properties. A remarkable finding is that the diffusion zones not only enable the cooperative deformation between the brittle Ti-enriched zones and the ductile Nb-enriched zones but also act as the crack-arresters to prevent the local cracks in the Ti-enriched zones from further propagating across the composite.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
文摘In order to improve the mechanical property and Cl- + S2- corrosion resistance of B15 copper.nickel alloy, Cu.15Ni-xRE (x: 0-0.1% by weight) alloy was prepared by adding rare earth (RE) in melted Cu-15Ni alloy using metal mould casting method. Optical microscopy( OM), electronic tensile testing machine, X-ray diffraction ( XRD ), scanning electron microscope ( SEM ), and electrochemical testing system were used to analyze mechanical property, corrosion resistance property, and surface microstructure of different treatment samples. The results of OM and tensile testing show that the RE addition can effectively deoxidize the alloy melt and the microstructura of the alloy changes from coarse dendrite to small equlaxed grain. By addition of 0.05 % RE, the tensile strength and elongation of Cu-15Ni alloys are improved from 294 MPa to 340 MPa, and 8 % to 33.5 % respectively. The results of electrochemical testing show that the corrosion resistance of Cu-15Ni alloy is greatly improved by adding proper amount of RE, whereas excess addition of RE worsens the corrosion resistance. The optimum RE content was about 0.05 % by weight. In comparison with the alloy without RE, the corrosion potential and corrosion current density of Cu-15Ni alloy containing proper RE decreased by about - 0. 28 V and 70 A/cm2, respectively.
基金Natural Science Foundation of Shanxi Province (No.2012011022-3)
文摘To investigate the dynamic mechanical behavior of AZ31 Mg alloy, dynamic compression was carried out using a split Hopkinson pressure bar (5HPB) apparatus at strain rates up to 2.0 × 10^3 s^-1, and dynamic hardness was tested employ- ing a dynamic hardness device at room temperature. Microstructural characteristic was analysed by optical microscopy. The dynamic compression results demonstrate that AZ31 Mg alloy exhibits obvious yield phenomena and strain hardening behav- ior at high strain rates. The basically same curvature of stress-strain curves shows a similar strain hardening rate. The dy- namic yield strength changes little, and the peak stress increases with the strain rates. The dynamic hardness test results indi- cate that the dynamic mechanical properties of AZ31 alloy sheet are anisotropic. The dynamic hardness increases slowly with average strain for the 0° and 45° oriented samples. For the 90° oriented sample, dynamic hardness with strain increases rapidly first and then decreases when the strain is more than 0.14. An examination by optical microscopy after high strain rate deformation reveals the occurrence of twinning, and the twin area percentage escalates with the strain rate increasing.
文摘Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.
文摘This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.