The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and s...The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.展开更多
This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The r...This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The results indicated that the addition of Bi and Sb significantly reduced the undercooling of solders,refined theβ-Sn phase and extended the eutectic areas of the solders.Moreover,the formation of SbSn and Bi phases in the solder matrix affected the mechanical properties of the solder.With the addition of 3 wt.%Bi and 3 wt.%Sb,the ultimate tensile strength and hardness of the SAC0705 base alloy increased from 31.26 MPa and 15.07 HV to 63.15 MPa and 23.68 HV,respectively.Ductility decreased due to grain boundary strengthening,solid solution strengthening,and precipitation strengthening effects,and the change in the fracture mechanism of the solder alloys.展开更多
文摘The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.
基金supported by the Division of Physical Science,Faculty of Science,Prince of Songkla University (PSU),Thailand
文摘This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The results indicated that the addition of Bi and Sb significantly reduced the undercooling of solders,refined theβ-Sn phase and extended the eutectic areas of the solders.Moreover,the formation of SbSn and Bi phases in the solder matrix affected the mechanical properties of the solder.With the addition of 3 wt.%Bi and 3 wt.%Sb,the ultimate tensile strength and hardness of the SAC0705 base alloy increased from 31.26 MPa and 15.07 HV to 63.15 MPa and 23.68 HV,respectively.Ductility decreased due to grain boundary strengthening,solid solution strengthening,and precipitation strengthening effects,and the change in the fracture mechanism of the solder alloys.