We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamin...We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.展开更多
基金This work was supported by the National Key Research & Development Program of China (No.2016YFA0200604), the National Natural Science Foundation of China (No.21273210), the Ministry of Science and Technology of China (No.2017YFA0204904), the Fundamen- tal Research Funds for the Central Universities (No.WK2340000074). We used computational re- sources of Super-computing Center of University of Science and Technology of China.
文摘We perform first-principles simulations on a type of two-dimensional metal-organic nanosheet derived from the recently reported manganese bis-dithiolene Mn3C12S12 [Nanoscale 5, 10404 (2013)] and manganese bis-diamine Mn3C12N12H12 [ChemPhysChem 16, 614 (2015)] mono-layers. By coordinating chalcogen (S or O) atoms and -NH- group to Mn atoms with trans- or cis-structures and preserving space inversion symmetry, four configurations of this type of nanosheet are obtained: trans-manganese dithiolene-diamine Mn3(C6S3N3H3)2, cis- manganese dithiolene-diamine Mn3(C6S6)(C6N6H6), trans-manganese dihydroxyl-diamine Mn3(C6O3N3H3)2, and cis-manganese dihydroxyl-diamine Mn3(C6O6)(C6N6H6). The ge- ometric con guration, electronic structure and magnetic properties of these metal-organic nanosheets are systematically explored by density functional theory calculations. The cal- culated results show that Mn3(C6S3N3H3)2, Mn3(C6O3N3H3)2 and Mn3(C6O6)(C6N6H6) monolayers exhibit half-metallicity and display strong ferromagnetism with Curie transition temperatures near and even beyond room temperature, and Mn3(C6S6)(C6N6H6) monolayer is a semiconductor with small energy gap and spin frustration ground state. The mechanisms for the above properties, especially in uences of diflerent groups (atoms) substitution and coordination style on the magnetism of the nanosheet, are also discussed. The predicted two-dimensional metal-organic nanosheets have great promise for the future spintronics ap-plications.