A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst...A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.展开更多
We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring ...We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring structure and also represents the largest Al-containing polyoxotitanium cluster(PTC) observed thus far. The presence of a shell of organic ligands as well as the incorporation of hetero-AlⅢ ions endowed the nanocluster with high air, thermal, and pH stabilities. The present compound exhibited a record photocatalytic hydrogen evolution of 402.88 μmol g–1 h–1 among PTC materials. This work not only paves the way towards stable PTC materials but also provides new insights into the design of novel photocatalysts.展开更多
A new complex[Ni(en) 2V 6O 14] n was hydrothermally synthesized and characterized by 2-dimensional vanadium oxide framework pillared by Ni(en) 2 group. Single crystal X-ray analysis indicates that this compound crysta...A new complex[Ni(en) 2V 6O 14] n was hydrothermally synthesized and characterized by 2-dimensional vanadium oxide framework pillared by Ni(en) 2 group. Single crystal X-ray analysis indicates that this compound crystallizes in monoclinic system, space group P2 1/c with a= 0.892 17(18) nm, b= 1.711 1(3) nm, c=0.662 73(13) nm, β=111.58(3)°, V=0.940 8(3) nm 3, Z=2, D c= 2.501 g/cm 3, R=0.042 3, wR=0.060 9, S=1.006.展开更多
基金supported by the National Natural Science Foundation of China(51268001)~~
文摘A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.
文摘We investigated the hydrolysis of TiⅣ along with naturally abundant AlⅢ ions and reported the formation of a stable and semiconducting nanocluster. Interestingly, this compound exhibits an unusual odd-membered ring structure and also represents the largest Al-containing polyoxotitanium cluster(PTC) observed thus far. The presence of a shell of organic ligands as well as the incorporation of hetero-AlⅢ ions endowed the nanocluster with high air, thermal, and pH stabilities. The present compound exhibited a record photocatalytic hydrogen evolution of 402.88 μmol g–1 h–1 among PTC materials. This work not only paves the way towards stable PTC materials but also provides new insights into the design of novel photocatalysts.
文摘A new complex[Ni(en) 2V 6O 14] n was hydrothermally synthesized and characterized by 2-dimensional vanadium oxide framework pillared by Ni(en) 2 group. Single crystal X-ray analysis indicates that this compound crystallizes in monoclinic system, space group P2 1/c with a= 0.892 17(18) nm, b= 1.711 1(3) nm, c=0.662 73(13) nm, β=111.58(3)°, V=0.940 8(3) nm 3, Z=2, D c= 2.501 g/cm 3, R=0.042 3, wR=0.060 9, S=1.006.