Three Mn(Ⅲ) complexes of chiral porphyrin-nicotine compounds were synthesized from tetrasubstited phorphrius and chiral nicotine, as well as maganees acetate in DMF. The complexes were characterized by UV, IR, 1H NMR...Three Mn(Ⅲ) complexes of chiral porphyrin-nicotine compounds were synthesized from tetrasubstited phorphrius and chiral nicotine, as well as maganees acetate in DMF. The complexes were characterized by UV, IR, 1H NMR, MS and elemental analysis. They are expected to have, simultaneously, chiral induction and phase transformation functions for catalysis reactions.展开更多
Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni...Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni on Fe/Al2O3the activity of the catalyst was retained even at the high activation temperature at 950℃ and up to180 min.The Ni promotion enhanced the reducibility of Fe/Al2O3oxides showing higher catalytic activity with a hydrogen yield of 69%.The reactivity of bimetallic Mn and Fe over Al2O3catalyst decreased at 800℃ and 950℃ activation temperatures.Regeneration studies revealed that the catalyst could be effectively recycled up to 9times.The addition of O2(1 ml,2 ml,4 ml)in the feed enhanced substantially CH4conversion,the yield of hydrogen and the stability of the catalyst.展开更多
γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ...γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ratio of 17/17/2, at total flow rate of 36 mL/min. The catalytic performance was assessed through CH4 and CO2 conversions, synthesis gas ratio (H2/CO) and long term stability. Catalytic activity and stability tests revealed that addition of Mn improved catalytic performance and led to higher stability of bimetallic catalysts which presented better coke suppression than monometallic catalyst. In this work, the optimum loading of Mn which exhibited the most stable performance and least coke deposition was 0.5wt%. The fresh and spent catalysts were characterized by various techniques such as Brunauer-Emmett-Teller, the temperature programmed desorption CO2- TPD, thermogravimetric analysis, X-ray diffraction, scanning electron microscope, EDX, and infrared spectroscopy.展开更多
A polyoxometalate-based complex [Mn(DMSO)5H2O]2SiMo12O40 has been synthe- sized and it crystallizes in triclinic, space group P with a = 11.863(2), b = 12.750(3), c = 13.255(3) , a = 83.62(3), b = 69.46(3), g = 87.14(...A polyoxometalate-based complex [Mn(DMSO)5H2O]2SiMo12O40 has been synthe- sized and it crystallizes in triclinic, space group P with a = 11.863(2), b = 12.750(3), c = 13.255(3) , a = 83.62(3), b = 69.46(3), g = 87.14(3), V = 1865.6(6) 3, Dc = 2.445 g/cm3, Z = 1, ?= 2.660 mm-1, Mr = 2746.56, F(000) = 1328, R = 0.0569, wR = 0.1190 and GOF = 1.125. The results of X-ray crystal analysis and IR spectrum show that there exists strong interaction between the heteropolyanions [SiMo12O40]4- and coordination cations [Mn(DMSO)5H2O]2+ in solid state.展开更多
文摘Three Mn(Ⅲ) complexes of chiral porphyrin-nicotine compounds were synthesized from tetrasubstited phorphrius and chiral nicotine, as well as maganees acetate in DMF. The complexes were characterized by UV, IR, 1H NMR, MS and elemental analysis. They are expected to have, simultaneously, chiral induction and phase transformation functions for catalysis reactions.
基金the Deanship of Scientific Research at King Saud University for its funding this research group No.(RG-1436-119)
文摘Methane decomposition reaction has been studied at three different activation temperatures(500℃,800℃ and950℃)over mesoporous alumina supported Ni–Fe and Mn–Fe based bimetallic catalysts.On co-impregnation of Ni on Fe/Al2O3the activity of the catalyst was retained even at the high activation temperature at 950℃ and up to180 min.The Ni promotion enhanced the reducibility of Fe/Al2O3oxides showing higher catalytic activity with a hydrogen yield of 69%.The reactivity of bimetallic Mn and Fe over Al2O3catalyst decreased at 800℃ and 950℃ activation temperatures.Regeneration studies revealed that the catalyst could be effectively recycled up to 9times.The addition of O2(1 ml,2 ml,4 ml)in the feed enhanced substantially CH4conversion,the yield of hydrogen and the stability of the catalyst.
文摘γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ratio of 17/17/2, at total flow rate of 36 mL/min. The catalytic performance was assessed through CH4 and CO2 conversions, synthesis gas ratio (H2/CO) and long term stability. Catalytic activity and stability tests revealed that addition of Mn improved catalytic performance and led to higher stability of bimetallic catalysts which presented better coke suppression than monometallic catalyst. In this work, the optimum loading of Mn which exhibited the most stable performance and least coke deposition was 0.5wt%. The fresh and spent catalysts were characterized by various techniques such as Brunauer-Emmett-Teller, the temperature programmed desorption CO2- TPD, thermogravimetric analysis, X-ray diffraction, scanning electron microscope, EDX, and infrared spectroscopy.
基金The project was supported by the Natural Science Foundation of Henan Province (NO. 004040300) and the Outstanding Youth Foundation of Henan Province (NO. 004031800)
文摘A polyoxometalate-based complex [Mn(DMSO)5H2O]2SiMo12O40 has been synthe- sized and it crystallizes in triclinic, space group P with a = 11.863(2), b = 12.750(3), c = 13.255(3) , a = 83.62(3), b = 69.46(3), g = 87.14(3), V = 1865.6(6) 3, Dc = 2.445 g/cm3, Z = 1, ?= 2.660 mm-1, Mr = 2746.56, F(000) = 1328, R = 0.0569, wR = 0.1190 and GOF = 1.125. The results of X-ray crystal analysis and IR spectrum show that there exists strong interaction between the heteropolyanions [SiMo12O40]4- and coordination cations [Mn(DMSO)5H2O]2+ in solid state.