Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than ...Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of th...Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of the loading condition in Mode-I. In the 45° case, K1 values are obtained within 10% errors when they are calculated by modified Dugdale model under biaxial loading. It is concluded that the modified Dugdale model is one of effective ways to evaluate stress intensity factor of AZ31 magnesium alloy sheet appropriately.展开更多
The fatigue behavior of press hardened Al-Si coated high strength steel has been investigated,and the fatigue strength turns out to be about 1 000 MPa.Surface morphology of fractured and non-fractured specimen has bee...The fatigue behavior of press hardened Al-Si coated high strength steel has been investigated,and the fatigue strength turns out to be about 1 000 MPa.Surface morphology of fractured and non-fractured specimen has been observed,and the coating shows significant influence on the fatigue behavior.The difference of elastic modulus between coating and substrate led to the main cracks perpendicular to the loading direction.The coating close to fracture exfoliated thinly,while the coating far away from the fracture kept integrated.Though the specimen was polished to obtain high surface quality,3 types of cracks occurred during the fatigue test.What’s more,inclusion particles were proved to play a crucial role in causing these cracks.展开更多
基金Project(51675538)supported by the National Natural Science Foundation of China。
文摘Fiber metal laminates(FMLs),a kind of lightweight material with excellent comprehensive performance,have been successfully applied in aerospace.FMLs reinforced with carbon fiber have better mechanical properties than those with glass or aramid fiber.However,carbon fiber binding metal may lead to galvanic corrosion which limits its application.In this paper,electrochemical methods,optical microscope and scanning electron microscope were used to analyze the corrosion evolution of carbon fiber reinforced aluminum laminate(CARALL)in corrosive environment and explore anti-corrosion ways to protect CARALL.The results show that the connection between carbon fiber and aluminum alloy changes electric potential,causing galvanic corrosion.The galvanic corrosion will obviously accelerate CARALL corroded in solution,leading to a 72.1%decrease in interlaminar shear strength,and the crevice corrosion has a greater impact on CARALL resulting in delamination.The reduction of interlaminar shear strength has a similar linear relationship with the corrosion time.In addition,the adhesive layers between carbon fiber and aluminum alloy cannot protect CARALL,while side edge protection can effectively slow down corrosion rate.Therefore,the exposed edges should be coated with anti-corrosion painting.CARALL has the potential to be used for aerospace components.
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.
文摘Stress intensity factors of thin AZ31B magnesium alloy sheet under biaxial tension loading were analyzed by modified Dugdale model. K-values with crack angle of 90° obviously show that there is no influence of the loading condition in Mode-I. In the 45° case, K1 values are obtained within 10% errors when they are calculated by modified Dugdale model under biaxial loading. It is concluded that the modified Dugdale model is one of effective ways to evaluate stress intensity factor of AZ31 magnesium alloy sheet appropriately.
基金National Natural Science Foundation of China (No. 51275185, No. 51405171) National Basic Research Program of China (No. 2010CB630802-3)+1 种基金 Graduate Innovation and Entrepreneurship Fund of Huazhong University of Science and Technology (No. 0109070112) Fundamental Research Funds for the Central Universities (No. 0118110621)
文摘The fatigue behavior of press hardened Al-Si coated high strength steel has been investigated,and the fatigue strength turns out to be about 1 000 MPa.Surface morphology of fractured and non-fractured specimen has been observed,and the coating shows significant influence on the fatigue behavior.The difference of elastic modulus between coating and substrate led to the main cracks perpendicular to the loading direction.The coating close to fracture exfoliated thinly,while the coating far away from the fracture kept integrated.Though the specimen was polished to obtain high surface quality,3 types of cracks occurred during the fatigue test.What’s more,inclusion particles were proved to play a crucial role in causing these cracks.