Sensitizing molecular triplets by colloidal nanocrystals via triplet energy transfer is important for applications such as upconversion or organic synthesis.Typically two step triplet energy transfer(TET)are included ...Sensitizing molecular triplets by colloidal nanocrystals via triplet energy transfer is important for applications such as upconversion or organic synthesis.Typically two step triplet energy transfer(TET)are included in these applications:firstly the triplet energy stored in nanocrystals are extracted into surface ligands,and then the ligands further transfer triplet energy into molecules in bulk solution.Here we report one-step TET application from CsPbBr_(3)perovskite nanocrystals(NCs)to surface-anchored metalloporphyrin derivative molecules(MP).Compared to conventional two-step TET,the one-step TET mechanism possess lower energy loss and higher TET efficiency which is more generally implementable.In this scheme,photoexcitation of CsPbBr_(3)NCs leads to the sensitization of MP ligands triplets which efficiently emit phosphorescence.The enhanced light absorption of MP ligands and down-shifted photon emission can be useful in devices such as luminescent solar concentrators.展开更多
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by...Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.展开更多
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst...A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.展开更多
Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for diffe...Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.展开更多
The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ...The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.展开更多
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni...The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.展开更多
Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed ...Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.21803070).
文摘Sensitizing molecular triplets by colloidal nanocrystals via triplet energy transfer is important for applications such as upconversion or organic synthesis.Typically two step triplet energy transfer(TET)are included in these applications:firstly the triplet energy stored in nanocrystals are extracted into surface ligands,and then the ligands further transfer triplet energy into molecules in bulk solution.Here we report one-step TET application from CsPbBr_(3)perovskite nanocrystals(NCs)to surface-anchored metalloporphyrin derivative molecules(MP).Compared to conventional two-step TET,the one-step TET mechanism possess lower energy loss and higher TET efficiency which is more generally implementable.In this scheme,photoexcitation of CsPbBr_(3)NCs leads to the sensitization of MP ligands triplets which efficiently emit phosphorescence.The enhanced light absorption of MP ligands and down-shifted photon emission can be useful in devices such as luminescent solar concentrators.
基金The project was supported by the National Key R&D Program of China(2021YFF0500702)Natural Science Foundation of Shanghai(22JC1404200)+3 种基金Program of Shanghai Academic/Technology Research Leader(20XD1404000)Natural Science Foundation of China(U22B20136,22293023)Science and Technology Major Project of Inner Mongolia(2021ZD0042)the Youth Innovation Promotion Association of CAS。
文摘Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction.
基金financial supports from the National Natural Science Foundation of China(No.51071125)the Major Project of Department of Education of Jiangxi Province,China(No.GJJ210605)。
文摘A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys.
基金Projects (50801019, 51071062, 50771041) supported by the National Natural Science Foundation of ChinaProject (2011CB605504) supported by the National Basic Research Program of China
文摘Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.
基金Project(50971041)support by the National Natural Science Foundation of China
文摘The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%.
基金Project (2008CL068L) supported by the Natural Science Research Project of Higher Education of Jiangsu Province, ChinaProject (50901036) supported by the National Natural Science Foundation of China
文摘The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging.
基金Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in UniversityProject(2011BAE22B04)supportedby the National Key Technology R&D Program of ChinaProject(51271206)supported by the National Natural Science Foundation of China
文摘Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.