To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from...Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.展开更多
A new process for utilization of hazardous lead-bearing wastes and iron-rich wastes by reducing-matting smelting has been developed.The slag(SG) and the iron-rich matte(IRM) are the main by-products from reducing-...A new process for utilization of hazardous lead-bearing wastes and iron-rich wastes by reducing-matting smelting has been developed.The slag(SG) and the iron-rich matte(IRM) are the main by-products from reducing-matting smelting of lead-bearing wastes and iron-rich wastes.The environmental risk of heavy metals(Cd,Zn,Pb and As) in the main by-products versus the charging material for reducing-matting smelting(CM) has been systematically assessed using leaching toxicity test,the three-stage sequential extraction procedure of European Community Bureau of Reference(BCR) and Hakanson Potential Ecological Risk Index Method(PERI).The results demonstrate that the ecological risk level of heavy metals for SG and IRM is significantly reduced after the reducing-matting smelting process compared with that for CM.展开更多
A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especi...A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.展开更多
It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results co...It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results confirmed that lead-time was decreased and product customization was improved in making die by using computer technology. At the same time, precision molding can decrease the reject ratio of refiner plates, and optimizing the alloy and shakeout time can eliminate the need for heat treatment. The new fabricating process showed several advantages over the traditional process in increasing toughness, better casting precision, elimination of the annealing treatment stage and raising production efficiency.展开更多
The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal cont...The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal content in slag were investigated.Experimental results indicated that the metal(Pb+Sb)recovery rate was up to 88.30%,and metal(Pb+Sb)content in slag was below 1 wt.%under the condition of slag composition of 21-22 wt.%Fe,19-20 wt.%SiO2 and 17-18 wt.%Ca O with Fe/SiO2 mass ratio of 1.1:1 and Ca O/SiO2 mass ratio of 0.9:1.The microanalysis of the alloy and slag demonstrated that the main phases in the alloy contained metallic Pb,metallic Sb and a small amount of Cu2 Sb and Fe Sb2 intermetallic compounds.The slag was mainly composed of kirschsteinite and fayalite.Zinc in the raw material was mainly oxidized into the slag phase in the form of zinc oxide.展开更多
Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investig...Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investigated by galvanostatic test. The microstructures of these alloys and their corroded surfaces were studied by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. The results show that the activation of magnesium is not prominent when only aluminum or lead exists in the magnesium matrix, but the coexistence of the two elements can increase the activation. The activation mechanism of Mg-Al-Pb alloy is dissolving-reprecipitating and there is a synergistic effect between aluminium and lead: the precipitated lead oxides on the surface of the alloy can facilitate the precipitation of Al(OH)3, which can peel the Mg(OH)2 film in the form of 2Mg(OH)2AI(OH)3 and activate the magnesium matrix.展开更多
A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and...A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.展开更多
The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas...The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.展开更多
In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chem...In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.展开更多
Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently.A high-efficiency melting simulation method saves much simulation time and computational resources.To co...Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently.A high-efficiency melting simulation method saves much simulation time and computational resources.To compare the efficiency of our newly developed shock melting(SM)method with that of the well-established two-phase(TP)method,we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials.Although we only use 640 atoms to determine the melting temperature of Au in the SM method,the resulting melting curve accords very well with the results from the TP method using much more atoms.Thus,this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method,implying the robustness and efficiency of the SM method.展开更多
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
基金Project (2007J0012) supported by the Natural Science Foundation of Fujian Province, ChinaProject (019811) supported by Foxy in the 6th Framework Program, European Commission
文摘Electrochemical studies on silicon deposition were performed in molten salt electrolytes. Purification of metallurgical grade silicon by electrorefining was carried out in molten Si-chloride salts at temperatures from 973 K to 1223 K. It was found that the use of a liquid alloy anode of silicon and copper was beneficial in molten CaCl2 with NaCl, CaO and dissolved Si. ICP-AES analysis results showed efficient removal of metal impurities, such as titanium, aluminum and iron, which are present in significant quantities in the feedstock. The contents of boron and phosphorus in the silicon after electrorefining were reduced from 36×10-6 and 25×10-6 to 4.6×10-6 and 2.8 ×10-6, respectively. The energy consumption of electrorefining was estimated to be about 9.3 kW?h/kg.
基金Project(2012BAC12B02)supported by the National Key Technology R&D Program of ChinaProject(2014FJ1011)supported by the Key Projects of Science and Technology of Hunan Province,ChinaProject(2011AA061001)supported by the National High-tech Research and Development Program of China
文摘A new process for utilization of hazardous lead-bearing wastes and iron-rich wastes by reducing-matting smelting has been developed.The slag(SG) and the iron-rich matte(IRM) are the main by-products from reducing-matting smelting of lead-bearing wastes and iron-rich wastes.The environmental risk of heavy metals(Cd,Zn,Pb and As) in the main by-products versus the charging material for reducing-matting smelting(CM) has been systematically assessed using leaching toxicity test,the three-stage sequential extraction procedure of European Community Bureau of Reference(BCR) and Hakanson Potential Ecological Risk Index Method(PERI).The results demonstrate that the ecological risk level of heavy metals for SG and IRM is significantly reduced after the reducing-matting smelting process compared with that for CM.
基金Projects(51404231,51474201)supported by the National Natural Science Foundation of ChinaProject(1508085QE81)supported by Anhui Provincial Natural Science Foundation,China+1 种基金Project(2014M561846)supported by China Postdoctoral Science FoundationProject(2012065)supported by 100 Talent Program of Chinese Academy of Sciences
文摘A new method about purification of metallurgical grade silicon (MG-Si) by a combination of Si-Al solvent refining andgas blowing treatment was proposed. The morphologies and transformation of impurity phases, especially for boron and iron in Si-Al melt were investigated during Ar-H2 gas blowing treatment. The mechanism of boron removal was discussed. The resultsindicate that gas blowing can refine grain size and increase nucleation of the primary Si. Boron can be effectively removed fromMG-Si using the Ar-H2 gas blowing technique during the Si-Al solvent refining. Compared with the sample without gas blowing,the removal efficiency of boron increases from 45.83% to 74.73% after 2.5 h gas blowing. The main impurity phases containingboron are in the form of TiB2, AlB2 and VB compounds and iron-containing one is in the form of β-Al5FeSi intermetallic compound.Part of boron combines [H] to transform into gas BxHy (BH, BH2) and diffuses towards the surface of the melt and is volatilized byAr-H2 gas blowing treatment under electromagnetic stirring.
文摘It was discussed how refiner plate is produced by a new process, such as three dimension making die with computer technology, shell molding, optimizing the alloy and controlling shakeout time with computer. Results confirmed that lead-time was decreased and product customization was improved in making die by using computer technology. At the same time, precision molding can decrease the reject ratio of refiner plates, and optimizing the alloy and shakeout time can eliminate the need for heat treatment. The new fabricating process showed several advantages over the traditional process in increasing toughness, better casting precision, elimination of the annealing treatment stage and raising production efficiency.
基金Project(51474248)supported by the National Natural Science Foundation of China
文摘The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal content in slag were investigated.Experimental results indicated that the metal(Pb+Sb)recovery rate was up to 88.30%,and metal(Pb+Sb)content in slag was below 1 wt.%under the condition of slag composition of 21-22 wt.%Fe,19-20 wt.%SiO2 and 17-18 wt.%Ca O with Fe/SiO2 mass ratio of 1.1:1 and Ca O/SiO2 mass ratio of 0.9:1.The microanalysis of the alloy and slag demonstrated that the main phases in the alloy contained metallic Pb,metallic Sb and a small amount of Cu2 Sb and Fe Sb2 intermetallic compounds.The slag was mainly composed of kirschsteinite and fayalite.Zinc in the raw material was mainly oxidized into the slag phase in the form of zinc oxide.
文摘Mg-6%Al, Mg-5%Pb and Mg-6%Al-5%Pb (mass fraction) alloys were prepared by induction melting with the protection of argon atmosphere. Their electrochemical activations in different electrolyte solutions were investigated by galvanostatic test. The microstructures of these alloys and their corroded surfaces were studied by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. The results show that the activation of magnesium is not prominent when only aluminum or lead exists in the magnesium matrix, but the coexistence of the two elements can increase the activation. The activation mechanism of Mg-Al-Pb alloy is dissolving-reprecipitating and there is a synergistic effect between aluminium and lead: the precipitated lead oxides on the surface of the alloy can facilitate the precipitation of Al(OH)3, which can peel the Mg(OH)2 film in the form of 2Mg(OH)2AI(OH)3 and activate the magnesium matrix.
基金Projects(2014KTZB01-02-03,2014KTZB01-02-04)supported by Shaanxi Science and Technology Coordination and Innovation Program,ChinaProject(DP120101672)supported by Australian Research Council(ARC)Discovery Grant,ARC Centre of Excellence for Design in Light Metals,Australia
文摘A yttrium-containing high-temperature titanium alloy(Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting(SEBM). The resulting microstructure and textures were studied using scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and electron backscattered diffraction(EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50-250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen(7×10-4, mass fraction) and yttrium(10-3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.
基金Project(2016YFB0301003)supported by the National Key R&D Program of ChinaProject(51871148)supported by the National Natural Science Foundation of ChinaProject(sklmmc-kf18-02)supported by Open Research Fund of the State Key Laboratory of Metal Matrix Composites,China
文摘The effect of different refining processes on inclusions and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy was investigated, including two-stage hexachloroethane (C2Cl6) refining process, two-stage rotating gas bubbling refining process and two-stage composite refining process. It was found that the two-stage composite refining process, which combined C2Cl6 and rotating gas bubbling, can significantly improve the melt purity and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy. Compared to the unrefined alloy, the volume fraction of gas porosity defects and slag inclusions decreased from 1.47% to 0.12%, and the yield strength, ultimate tensile strength and elongation of as-quenched alloy increased from 113 MPa,179 MPa and 3.9% to 142 MPa, 293 MPa and 18.1%, respectively. C2Cl6 was first utilized to degas and remove large size slag inclusions before lithium addition, and then the rotating gas bubbling was utilized to do the further degassing and remove the suspended fine inclusions after lithium addition. The two-stage composite refining process can take advantage of two methods and get the remarkable refining effect.
文摘In order to investigate the effect of the vacuum degree in vacuum induction melting (VIM) furnace on the mechanical properties of Ni-Fe-Cr based alloy, four samples were prepared under different conditions. The chemical analysis results show that under the argon atmosphere, there is more dissipation in Al and Ti, whereas it is reduced by establishing the vacuum atmosphere. The gas analysis results show that the oxygen and nitrogen contents of the samples decrease with increasing vacuum degree. However, there is no dissipation in the gas content of the samples in higher degree of vacuum. In addition, the thermodynamic calculations show that the probability of TiO2 and Al2O3 formation is high due to the small value of the equilibrium oxygen. Higher vacuum degree reduces the tensile and yield strength of the alloys, while it enhances the elongation and reduction of area values due to the lower amount of the inclusions and evaporation of Al and Ti under higher vacuum. On the other hand, increasing vacuum degree changes the fracture mode from brittle to ductile.
基金Supported by the National Natural Science Foundation of China under Grant No.41574076the NSAF of China under Grant No.U1230201/A06the Young Core Teacher Scheme of Henan Province under Grant No.2014GGJS-108
文摘Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently.A high-efficiency melting simulation method saves much simulation time and computational resources.To compare the efficiency of our newly developed shock melting(SM)method with that of the well-established two-phase(TP)method,we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials.Although we only use 640 atoms to determine the melting temperature of Au in the SM method,the resulting melting curve accords very well with the results from the TP method using much more atoms.Thus,this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method,implying the robustness and efficiency of the SM method.