The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitat...The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.展开更多
The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analys...The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.展开更多
The microstructure development of lamellar structure of an orthorhombic Ti2AlNb-based Ti?22Al?26Nb?1Zr alloy, includingB2 decomposition and spheroidization ofO phase, was investigated. The results show that the lam...The microstructure development of lamellar structure of an orthorhombic Ti2AlNb-based Ti?22Al?26Nb?1Zr alloy, includingB2 decomposition and spheroidization ofO phase, was investigated. The results show that the lamellar structure is fabricated by heating the samples in the singleB2 phase field and cooling slowly in the furnace. Aging treatments are conducted in the (O+B2) phases field by air cooling. After aging at 700 °C for a short time within 100 h, there is no significant change of microstructures, whereas the coarsening of lamellae is observed in the long-term aged microstructure. Ti?22Al?26Nb?1Zr alloy exhibits microstructural instability including the severe dissolution ofB2 lamella, discontinuous precipitation and spheroidization of O phase during the long term aging process at 700 °C up to 800 h. In addition, a pronounced formation of branch-shapedO phase lamella is observed for the alloy aged over 100 h.展开更多
[Objective] The aim was to investigate the effects of soil geochemistry on the quality of winter jujube.[Method]Based on the data of ecological geochemical survey in lower Yellow River Basin,the relevance of the geoch...[Objective] The aim was to investigate the effects of soil geochemistry on the quality of winter jujube.[Method]Based on the data of ecological geochemical survey in lower Yellow River Basin,the relevance of the geochemistry environment in top soils and the quality of winter jujubes was analyzed.[Result]Cd,Ni and other heavy metals in the soil more obviously affected the nutrition of winter jujubes.[Conclusion]B,Mn,MgO,Cd,Zn,K2O and other elements in the root soil played an important role in the enrichment of Cr and Hg of winter jujube fruit.And the absorption of heavy metals in winter jujube root could be interfered by improving fertilization method,to reduce the enrichment of harmful elements in jujube fruit.展开更多
This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micr...This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.展开更多
Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were st...Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.展开更多
Microstructure and phase evolutions of Mg-A1 powders ball milled in hydrogen atmosphere were investigated. Both in Mg-3%A1 (mass fraction) and Mg-9%AI systems, fl-MgH2 phase was observed upon a short milling time of...Microstructure and phase evolutions of Mg-A1 powders ball milled in hydrogen atmosphere were investigated. Both in Mg-3%A1 (mass fraction) and Mg-9%AI systems, fl-MgH2 phase was observed upon a short milling time of 4 h and its maximum content of-80% was reached after 32 h. Neither as-milled powders of the in the two systems contain Mgl7All2. However, heating the milled powders of Mg-9%AI powders to 350 ~C resulted in the precipitation of Mg17A112. DTA/TG analyses of those powders milled for 8-40 h showed that either well-developed peak doublets or shoulders were observed, which plausibly corresponded to the separate hydrogen desorption from different particle fractions offl-MgH2.展开更多
A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothα...A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothαandβphases were studied.The results show thatαglobularization process is sluggish due to the limited boundary splitting at 820℃.With increasing temperature to 880℃,the accelerated boundary splitting and termination migration promote theαglobularization.At 820 and 880℃,the static recovery(SRV)and recrystallization(SRX)induce the grain refinement of interlamellarβphase.However,the excessively high temperature of 940℃ results in the coarsening ofαgrains due to the assistance of Ostwald ripening,and produces coarseβgrains mainly due to the absence of SRX in interlamellarβphases.Conclusively,880℃ is an appropriate annealing temperature to produce a homogeneous microstructure in which globularizedαand refinedβgrains distribute homogeneously.展开更多
Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission elec...Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.展开更多
The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results...The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization.展开更多
The effect of thermal-mechanical processing on the microstructure and mechanical properties of the duplex phase Mg-8Li-3Al-0.4Y alloy was investigated.The as-cast alloy was composed ofα-Mg,β-Li,AlLi,Al2Y and MgAlLi2...The effect of thermal-mechanical processing on the microstructure and mechanical properties of the duplex phase Mg-8Li-3Al-0.4Y alloy was investigated.The as-cast alloy was composed ofα-Mg,β-Li,AlLi,Al2Y and MgAlLi2phases.Annealing of the cold rolled alloy at350°C for60min was considered to be optimum.This caused full static recrystallization and spheroidization.A significantβ-Li loss occurred when the annealing time was increased to90min.The optimized annealing treatment produced the following values of the yield strength,ultimate strength and elongation:148MPa,184MPa and35%,respectively.The texture evolution of theα-phase and theβ-phase changed remarkably during thermal-mechanical processing.展开更多
To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these allo...To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.展开更多
The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that ...The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that the ability of coordinated deformation betweenαandβphases can influence uniformity of microstructure evolution.Specifically,αphase maintains the lamellar structure andβphase has a low degree of recrystallization when the ability of coordinated deformation is good.In this case,αandβphases still maintain the BOR(Burgers orientation relationship),and their interface relationship is not destroyed even at large deformation.Both of the deformation extent ofαlamellae and recrystallization degree ofβphase increase with the decline of ability of coordinated deformation.Theαphase only maintains the BOR withβphase on one side,while the uncoordinated rotation with theβphase on the other side occurs within 10°.Theαandβphases rotate asynchronously when ability of coordinated deformation is poor.The degree of interface dislocation increases,andαandβphases deviate from the BOR.展开更多
In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melami...In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells.展开更多
基金Project(50935007)supported by the National Natural Science Foundation of ChinaProject(2010CB731701)supported by the National Basic Research Program of China
文摘The dynamic globularization kinetics of TA15(Ti-6Al-2Zr-1Mo-1V) titanium alloy with a colony α microstructure during deformation at temperature range of 860-940 ℃ and strain rate range of 0.01-10 s-1 was quantitatively studied through isothermal compression tests.It is found that the dynamic globularization kinetics and the kinetics rate of TA15 are sensitive to deformation parameters.The dynamic globularized fraction increases with increasing strain,temperature but decreasing strain rate.The variation of globularized fraction with strain approximately follows an Avrami type equation.Using the Avrami type equation,the initiation and completion strains for dynamic globularization of TA15 were predicted to be 0.34-0.59 and 3.40-6.80.The kinetics rate of dynamic globularization increases with strain at first,then decreases.The peak value of kinetics rate,which corresponds to 20%-33% globularization fraction,increases with increasing temperature and decreasing strain rate.
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘The as-cast Mg2Ni-type Mg20–xYxNi10 (x=0, 1, 2, 3 and 4) electrode alloys were prepared by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled in a planetary-type ball mill. The analyses of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that nanocrystalline and amorphous structure can be obtained by mechanical milling, and the amount of amorphous phase increases with milling time prolonging. The electrochemical measurements show that the discharge capacity of Y0 alloy increases with milling time prolonging, while that of the Y-substituted alloys has a maximum value in the same condition. The cycle stabilities of the alloys decrease with milling time prolonging. The effect of milling time on the electrochemical kinetics of the alloys is related to Y content. Whenx=0, the high rate discharge ability, diffusion coefficient of hydrogen atom, limiting current density and charge transfer rate all increase with milling time prolonging, but the results are exactly opposite whenx=3.
基金Project(2011CB605503)supported by the National Basic Research Program of ChinaProject(51371144)supported by the National Natural Science Foundation of China
文摘The microstructure development of lamellar structure of an orthorhombic Ti2AlNb-based Ti?22Al?26Nb?1Zr alloy, includingB2 decomposition and spheroidization ofO phase, was investigated. The results show that the lamellar structure is fabricated by heating the samples in the singleB2 phase field and cooling slowly in the furnace. Aging treatments are conducted in the (O+B2) phases field by air cooling. After aging at 700 °C for a short time within 100 h, there is no significant change of microstructures, whereas the coarsening of lamellae is observed in the long-term aged microstructure. Ti?22Al?26Nb?1Zr alloy exhibits microstructural instability including the severe dissolution ofB2 lamella, discontinuous precipitation and spheroidization of O phase during the long term aging process at 700 °C up to 800 h. In addition, a pronounced formation of branch-shapedO phase lamella is observed for the alloy aged over 100 h.
基金Supported by China Geological Survey Project(121210310306)~~
文摘[Objective] The aim was to investigate the effects of soil geochemistry on the quality of winter jujube.[Method]Based on the data of ecological geochemical survey in lower Yellow River Basin,the relevance of the geochemistry environment in top soils and the quality of winter jujubes was analyzed.[Result]Cd,Ni and other heavy metals in the soil more obviously affected the nutrition of winter jujubes.[Conclusion]B,Mn,MgO,Cd,Zn,K2O and other elements in the root soil played an important role in the enrichment of Cr and Hg of winter jujube fruit.And the absorption of heavy metals in winter jujube root could be interfered by improving fertilization method,to reduce the enrichment of harmful elements in jujube fruit.
文摘This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.
基金Project(41202051)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-end Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting.
基金Projects(10JC407700,11ZR1417600)supported by the Science and Technology Committee of Shanghai,ChinaProject(12zz017)supported by the Shanghai Education Committee,China
文摘Microstructure and phase evolutions of Mg-A1 powders ball milled in hydrogen atmosphere were investigated. Both in Mg-3%A1 (mass fraction) and Mg-9%AI systems, fl-MgH2 phase was observed upon a short milling time of 4 h and its maximum content of-80% was reached after 32 h. Neither as-milled powders of the in the two systems contain Mgl7All2. However, heating the milled powders of Mg-9%AI powders to 350 ~C resulted in the precipitation of Mg17A112. DTA/TG analyses of those powders milled for 8-40 h showed that either well-developed peak doublets or shoulders were observed, which plausibly corresponded to the separate hydrogen desorption from different particle fractions offl-MgH2.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51971046)the Fundamental Research Funds for the Central Universities,China(No.2020CDJGFCL005)。
文摘A lamellar-structure TC21 titanium alloy was hot-rolled and subsequently annealed at 820,880 and 940℃ for 1 and 6 h,and the effects of annealing parameters on static globularization and morphology evolution of bothαandβphases were studied.The results show thatαglobularization process is sluggish due to the limited boundary splitting at 820℃.With increasing temperature to 880℃,the accelerated boundary splitting and termination migration promote theαglobularization.At 820 and 880℃,the static recovery(SRV)and recrystallization(SRX)induce the grain refinement of interlamellarβphase.However,the excessively high temperature of 940℃ results in the coarsening ofαgrains due to the assistance of Ostwald ripening,and produces coarseβgrains mainly due to the absence of SRX in interlamellarβphases.Conclusively,880℃ is an appropriate annealing temperature to produce a homogeneous microstructure in which globularizedαand refinedβgrains distribute homogeneously.
基金supported by the National Natural Science Foundation of China(21173105,21172098)~~
文摘Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.
基金Project(51575446)supported by the National Natural Science Foundation of ChinaProject(2017KJXX-27)supported by the Shaanxi Province Youth Science and Technology New Star Plan,ChinaProject(3102017AX003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization.
基金Project(51461018)supported by the National Natural Science Foundation of ChinaProjects(20133BAB20008,20144ACB20013)supported by the Key Program of Natural Science Foundation of Jiangxi Province,ChinaProject(20151BDH80006)supported by the International Science and Technology Cooperation Program of Jiangxi Province,China
文摘The effect of thermal-mechanical processing on the microstructure and mechanical properties of the duplex phase Mg-8Li-3Al-0.4Y alloy was investigated.The as-cast alloy was composed ofα-Mg,β-Li,AlLi,Al2Y and MgAlLi2phases.Annealing of the cold rolled alloy at350°C for60min was considered to be optimum.This caused full static recrystallization and spheroidization.A significantβ-Li loss occurred when the annealing time was increased to90min.The optimized annealing treatment produced the following values of the yield strength,ultimate strength and elongation:148MPa,184MPa and35%,respectively.The texture evolution of theα-phase and theβ-phase changed remarkably during thermal-mechanical processing.
基金Projects(51761032,51471054,51871125)supported by the National Natural Science Foundation of China
文摘To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.
基金financial supports from the National Natural Science Foundation of China (No. 51905436)the Natural Science Foundation of Shaanxi Province, China (No. 2020JQ-156)。
文摘The evolution of coordination betweenαandβphases for a two-phase titanium alloy was investigated.For this purpose,hot compression and heat treatment under different conditions were carried out.The results show that the ability of coordinated deformation betweenαandβphases can influence uniformity of microstructure evolution.Specifically,αphase maintains the lamellar structure andβphase has a low degree of recrystallization when the ability of coordinated deformation is good.In this case,αandβphases still maintain the BOR(Burgers orientation relationship),and their interface relationship is not destroyed even at large deformation.Both of the deformation extent ofαlamellae and recrystallization degree ofβphase increase with the decline of ability of coordinated deformation.Theαphase only maintains the BOR withβphase on one side,while the uncoordinated rotation with theβphase on the other side occurs within 10°.Theαandβphases rotate asynchronously when ability of coordinated deformation is poor.The degree of interface dislocation increases,andαandβphases deviate from the BOR.
文摘In the present work, nitrogen‐doped carbon spheres were synthesized through a simple hydro‐thermal treatment using glucose and melamine as inexpensive carbon and nitrogen sources, re‐spectively. The ratio of melamine to glucose and annealing temperature were optimized. The final optimal sample exhibited a catalytic activity for the oxygen reduction reaction(ORR) that was supe‐rior than that of commercial 20%Pt/C in 0.1 mol/L KOH. It revealed an onset potential of –22.6 mV and a half‐wave potential of –133.6 mV (vs. Ag/AgCl), which are 7.2 and 5.9 mV more positive than those of the 20%Pt/C catalyst, respectively, as well as a limiting current density of 4.6 mA/cm^2, which is 0.2 mA/cm^2 higher than that of the 20%Pt/C catalyst. The catalyst also exhibited higher stability and superior durability against methanol than 20%Pt/C. Moreover, ORRs on this catalyst proceed through a more effective 4 e^– path. The above mentioned superiority of the as‐prepared catalyst makes it promising for fuel cells.