The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstruc...The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.展开更多
Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the ...Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.展开更多
Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and compositi...Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and composition of the resultant nanoporous copper were investigated. It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors, which consequently results in a more fully dealloying for forming nanoporous copper. The alloy phase changes from Cuo.a9Mno.51 and Cuo.21Mno.79 of non-thermally treated precursor to Cuo.33Mn0.67 of heat treated alloy. The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04% (molar fraction) made from the precursor without and with 95 h heat treatment. The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones: the uniform bi-continuous structure zone and the blurry or no pore structure zone. Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor, and the average ligament diameter is 40 nm, far smaller than that from the non-thermally treated precursor, in which the average ligament diameter is estimated to be about 70 nm.展开更多
With the multi-phase field model, the unidirectional solidification with constant velocity growth and variable velocity growth of the CBr4-C2C16 eutectic alloy is simulated in three dimensions. The simulated results w...With the multi-phase field model, the unidirectional solidification with constant velocity growth and variable velocity growth of the CBr4-C2C16 eutectic alloy is simulated in three dimensions. The simulated results with constant velocity growth show that with the increase of pulling velocity, the morphology of the CBr4-C2C16 alloy evolves in the sequence of lamellar merging -lamellar-rod transition-stable lamellar growth-oscillating growth-lamellar branching. A morphology selection map is established with different pulling velocities, which is confirmed to be correct by the velocity change process. It is shown that all of the morphology transitions, the average interface growth velocity and average interface undercooling show a hysteresis effect against the instant of velocity change. The relationship between the interface average undercooling and interface average growth velocity is consistent with the theoretical value.展开更多
基金Projects (50935007,51205317) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of ChinaProject (B08040) supported by Research Fund of the 111 Project
文摘The role of subtransus hot working on microstructure morphology of TA15 titanium alloy plate with elongatedαphases was studied by quantitative metallography on different sections. The results show that the microstructure morphology is mainly affected by loading direction. When the sample is compressed along normal direction, microstructure on the section vertical to normal direction has equiaxed primaryαphase but microstructure on the section vertical to rolling direction has strip primaryαphase with long axis along tangential direction. When the sample is compressed along rolling direction, microstructure on the section vertical to normal direction has strip primaryαphase elongated along tangential direction but microstructure on the section vertical to rolling direction consists of strip and irregular broad-band primaryαphase. The strip primaryαphase aspect ratio is smaller at lower temperature due to the dynamic break-down ofαphase. The difference on primaryαphase aspect ratio between different sections decreases after compression along distinct directions in two loading passes, suggesting the improvement of equiaxity of primaryαphase.
基金Projects(51205317,51575449) supported by the National Natural Science Foundation of ChinaProject(3102015AX004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014) supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(9140C6805021008) supported by the State Key Development Program for Basic Research of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Nanoporous copper with nano-scale pore size was synthesized by dealloying Mn-Cu precursor alloy using a free corrosion method. The effects of heat treatment of Mn-Cu precursors on alloy phase, morphology and composition of the resultant nanoporous copper were investigated. It is revealed that the compositions distribute homogeneously in the bulk Mn-Cu precursors, which consequently results in a more fully dealloying for forming nanoporous copper. The alloy phase changes from Cuo.a9Mno.51 and Cuo.21Mno.79 of non-thermally treated precursor to Cuo.33Mn0.67 of heat treated alloy. The residual Mn content in nanoporous copper is decreased from 12.97% to 2.04% (molar fraction) made from the precursor without and with 95 h heat treatment. The typical pore shape of nanoporous copper prepared by dealloying the precursor without the heat treatment is divided into two different zones: the uniform bi-continuous structure zone and the blurry or no pore structure zone. Nanoporous copper is of a uniform sponge-like morphology made from the heat-treated precursor, and the average ligament diameter is 40 nm, far smaller than that from the non-thermally treated precursor, in which the average ligament diameter is estimated to be about 70 nm.
基金supported by the National Natural Science Foundation of China (Grant No. 51001082)the China Postdoctoral Science Foundation (Grant No. 20090460654)Shanghai Science and Technology Commit-tee (Grant Nos. 0752nm004 and 08DZ2201300)
文摘With the multi-phase field model, the unidirectional solidification with constant velocity growth and variable velocity growth of the CBr4-C2C16 eutectic alloy is simulated in three dimensions. The simulated results with constant velocity growth show that with the increase of pulling velocity, the morphology of the CBr4-C2C16 alloy evolves in the sequence of lamellar merging -lamellar-rod transition-stable lamellar growth-oscillating growth-lamellar branching. A morphology selection map is established with different pulling velocities, which is confirmed to be correct by the velocity change process. It is shown that all of the morphology transitions, the average interface growth velocity and average interface undercooling show a hysteresis effect against the instant of velocity change. The relationship between the interface average undercooling and interface average growth velocity is consistent with the theoretical value.