The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu...The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu alloy decreases both the martensitic transformation temperature and the martensitic transformation temperature hysteresis. Transmission electron microscope (TEM) observations reveal that theCm martensite structure is the preferential formation phase. The intervariant structures in ZrCuAlCo alloy are (021) type I twins, while the dominant substructures inside the martensite variant are the (001) compound twins. With the increase of Co content, tensile fracture strength and strain are improved obviously.展开更多
TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by met...TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.展开更多
The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution elec...The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.展开更多
基金Projects(51171052,51171052,51322102)supported by the National Natural Science Foundation of ChinaProjects(2011CB012904,2012CB619400)supported by the National Basic Research Program of China+1 种基金Project(20112302130006)supported by Doctoral Program Foundation of Institutions of Higher Education of ChinaProject(HIT.BRET Ⅲ 201201)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of ternary alloying element Al and quaternary alloying element Co on the martensitic transformation of ZrCu-based shape memory alloy was investigated. The results show that the addition of Al and Co in ZrCu alloy decreases both the martensitic transformation temperature and the martensitic transformation temperature hysteresis. Transmission electron microscope (TEM) observations reveal that theCm martensite structure is the preferential formation phase. The intervariant structures in ZrCuAlCo alloy are (021) type I twins, while the dominant substructures inside the martensite variant are the (001) compound twins. With the increase of Co content, tensile fracture strength and strain are improved obviously.
基金Supported by the National Natural Science Foundation of China(No.51205004,51475003)Beijing Natural Science Foundation(No.3152010)Beijing Education Committee Science and Technology Program(No.km201510009004)
文摘TRIP590 advanced high strength steel sheets were heated by laser with different powers.Changes of the microstructure and the hardness of TRIP590 steel under laser heating with different powers were investigated by metallographic microscope,scanning electron microscope,and hardness tester.The purpose was to study the effect of laser power on microstructure and hardness of TRIP590 steel.It is shown that the power of laser plays an important role on the microstructure and hardness of heated steel sheets.The results are helpful to determine suitable power for the laser auxiliary forming of Trip590 steel in order to obtain uniform microstructure and high hardness.
基金Project(2008329)supported by Liaoning Provincial Education Ministry,ChinaProject supported by the Key Laboratory of Material Processing & Control of Liaoning Province,China
文摘The phase structure of ZK60-1Er magnesium alloy thermally compressed at the temperature of 450℃ and the strain rate of 1×10 -4 s -1 was determined by transmission electron microscopy(TEM)and high-resolution electron microscopy(HREM).The results show that this magnesium alloy contains many new W phases(Mg3Zn3Er2,FCC structure)in the matrix.Those new W phases have two morphologies,either irregularly rectangular or rod morphology·Lattice constants of the two new W phases are slightly higher than those of W Phase(Mg3Zn3Y2)containing rare earth element of yttrium.