In order to improve the bio-oxidation efficiency of Axi refractory gold concentrate, a two-step process including a high temperature chemical oxidation and a subsequent bio-oxidation, combined with p H control during ...In order to improve the bio-oxidation efficiency of Axi refractory gold concentrate, a two-step process including a high temperature chemical oxidation and a subsequent bio-oxidation, combined with p H control during the bio-oxidation step was used. The results revealed that the optimum mode was to maintain solution p H at 1.0-1.2 during the biological oxidation stage. Under this condition, the activity of mixed culture could be sustained and the formation of jarosite could be diminished, thus the oxidation efficiency was improved. The oxidation levels of iron and sulfur were improved by 12.50% and 15.49%, and the gold recovery was increased by 21.02%. Therefore, the two-step process combined with p H control is an effective method for oxidizing the biohydrometallurgical process of Axi gold concentrate, and it will have a broad prospect of application in dealing with complex refractory gold concentrate.展开更多
In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb a...In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb and As, respectively, remained in the final tailings and only about 28% of the total Au remained for further cyanidation processes. On the other hand, in bulk method of flotation the maximum Au recovery of 90.6% achieved after 60 min of flotation at the grind size with K80 of 146 micron. In addition, the bulk flotation method resulted in the concentrate with low concentrations of Sb and As elements. To improve the recovery of low-grade refractory gold ores, flotation should be followed by roasting, biological, or pressure oxidation processes so that the gold could be liberated prior to cyanidation processes. It is also found that the pressure oxidation pre-treatment of the concentrates prior to cyanidation may yield high gold recoveries of over than 83%. In these processes, recoveries are controlled by the temperature and the oxygen partial pressure in the solvent. However, by utilizing the bio-oxidation technique, the oxidation of sulfur to sulfate cannot be completed and, consequently, the gold recovery may be limited to only 72.2%.展开更多
Chalcopyrite is one of the most important copper minerals;however,the extracted efficiency of chalcopyrite is still not satisfactory in hydrometallurgy owing to its high lattice energy which leads to its low dissoluti...Chalcopyrite is one of the most important copper minerals;however,the extracted efficiency of chalcopyrite is still not satisfactory in hydrometallurgy owing to its high lattice energy which leads to its low dissolution kinetics.To overcome the difficulties,many advanced technologies have been developed,including the selection of high effectively bacteria,the inhibition of the passivation film adhered onto the minerals surface,and the maintenance of solution redox potential under an optimum range.Up to date,considerable researches on the first two terms have been summarized,while the overview of the last term has been rarely reported.Based on corresponding works in recent years,key trends and roles of solution redox potential in copper hydrometallurgy,including its definition,effect and maintenance,have been introduced in this review.展开更多
The corrosive electrochemistry of jamesonite was studied by cyclic voltammetry. Every peak in voltammograms was identified through thermodynamic calculation. The results show an irreversible electrode process by the s...The corrosive electrochemistry of jamesonite was studied by cyclic voltammetry. Every peak in voltammograms was identified through thermodynamic calculation. The results show an irreversible electrode process by the strong adsorption of oxidation elemental sulfur on jamesonite. A deficient-metal and sulfur-rich compound is formed under the potential of 80 mV at pH 6.86. The passive action by elemental sulfur occurs from 80 to 470 mV and S2O2-3, SO2-4 are produced at potential over 470 mV. The anodic peak producing SO2-4 is inhibited due to the deposition of PbSO4 at higher potential in Na2SO4 solution. The corrosive action of jamesonite becomes strong and the redox characterization similar to PbS, FeS and Sb2S3 appears at pH 9.18.展开更多
The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal cont...The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal content in slag were investigated.Experimental results indicated that the metal(Pb+Sb)recovery rate was up to 88.30%,and metal(Pb+Sb)content in slag was below 1 wt.%under the condition of slag composition of 21-22 wt.%Fe,19-20 wt.%SiO2 and 17-18 wt.%Ca O with Fe/SiO2 mass ratio of 1.1:1 and Ca O/SiO2 mass ratio of 0.9:1.The microanalysis of the alloy and slag demonstrated that the main phases in the alloy contained metallic Pb,metallic Sb and a small amount of Cu2 Sb and Fe Sb2 intermetallic compounds.The slag was mainly composed of kirschsteinite and fayalite.Zinc in the raw material was mainly oxidized into the slag phase in the form of zinc oxide.展开更多
A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibratio...A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.展开更多
In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also ...In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also investigated. At room temperature, manganese from low-grade manganese carbonate ores was extracted by sulfuric acid leaching without reductants. During the extracting process, single-factor analysis method was used to evaluate the effects of grinding fineness, sulfuric acid concentration, liquid-to-solid ratio, agitation rate and leaching time on the leaching efficiencies of Mn and Fe. The optimal leaching conditions are determined as coarse particles of below 2 mm size (without ball-milling), sulfuric acid concentration of 0.86 mol/L, liquid-to-solid ratio of 5:1, agitation rate of 150 r/rain and leaching for 180 min at room temperature. Under the optimal conditions, the leaching efficiencies of Mn and Fe are 96.21g and 13.35%, respectively. In addition, through the experiments at different temper- atures, it is found that the leaching process follows the shrinking core model under the conditions of changing acid concentration and intermittent reaction device. Moreover, the apparent activations of effective diffusion and chemical reaction in the kinetic model are calculated to be 18.83 and 27.15 kJ/mol, respectively.展开更多
In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybde...In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybdenum ore as an example, a theoretical model for the hurdle price under the optimal investment timing is constructed. Based on the example data, the op- tion price model is simulated. By the model, mine investment price can be computed and forecast effectively. According to the characteristics of mine investment, cut-off grade, reserve estimation and mine life in different price also can be quantified. The result shows that it is reliable and practical to enhance the accuracy for mining investment decision.展开更多
The modelling and optimization for the alkaline sulphide leaching of a complex copper concentrate containing 1.69% Sb and 0.14% Sn were studied.Response surface methodology,in combination with central composite face-c...The modelling and optimization for the alkaline sulphide leaching of a complex copper concentrate containing 1.69% Sb and 0.14% Sn were studied.Response surface methodology,in combination with central composite face-centred design(RSM-CCF),was used to optimise the operating parameters.The leaching temperature,sulphide ion concentration and solid concentration were chosen as the variables,and the response parameters were antimony and tin recovery,and the time required to achieve 90% Sb dissolution.It was confirmed that the leaching process was strongly dependent on the reaction temperature as well as the sulphide ion concentration without any significant dependence on the solid concentration.Furthermore,a mathematical model was constructed to characterise the leaching behaviour.The results from the model allow identification of the most favourable leaching conditions.The model was validated experimentally,and the results show that the model is reliable and accurate in predicting the leaching process.展开更多
In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution i...In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution in the deposit. That is, cutoff grade selection must be dynamic with respect to both time and space. A newly developed method that fulfills these requirements is presented. In this method, the deposit or a portion of it under study is divided into "decision units" based on the mining method and sample data. The statistical grade distribution and the grade-tonnage relationship of each decision unit are then computed based on the samples falling in the unit. Each decision unit with its grade-tonnage relationship is considered as a stage in a dynamic programming scheme and the problem is solved by applying a forward dynamic programming based algorithm with an objective function of maximizing the overall net present value (NPV). A software package is developed for the method and applied to an underground copper mine in Africa.展开更多
89 Au geochemical anomalies are delineated by using 1/200000 regional geochemical exploration data. By researching regional geochemical characteristics and the relationship with the geological background, the author p...89 Au geochemical anomalies are delineated by using 1/200000 regional geochemical exploration data. By researching regional geochemical characteristics and the relationship with the geological background, the author points out that: the main factors causing high background of Au geochemical anomalies are Gaixian and Dashiqiao formation of Liaohe group, intrusions of Mesozoic intermediate-acid intrusive rocks. The elements combination types of typical anomalies are determined by using factorial analysis,cluster analysis and other mathematical methods with the combination of elements association in typical anomalies:the composite anomaly of Baiyun gold deposits is Au-As-Sb, Maoling gold deposit is Au-As- Bi-Mo, Wulong gold deposits is Au-As-Bi-W, Xiaotongjiapuzi gold deposit is Au-As-Bi-Mo-Sb. By using multivariate statistical analysis method,62 ore-caused anomaly are preferred in 89 Au geochemical anomalies delineated. On this basis, the 62 anomalies are divided into 4 kinds of anomaly types reference to elements combination types of typical anomalies,the classification results of ore-caused anomalies are: 4 geochemical anomalies of Baiyun type,36 geochemical anomalies of Maoling type,11 geochemical anomalies of Wulong type, 11 geochemical anomalies of Xiaotongjapuzi type. According to the results, the prospecting direction is provided for the futme of gold exploration.展开更多
Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that C...Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that China has entered the "new normal" in recent years. The study uses a multi-regional input-output model, with linear programming to build an optimal model of industrial structure as well as a model of optimization degree under the energy constraint. The results of the study revealed that:(1) the degree of optimization of industrial structure in Anhui Province is optimal(0.763), while that of Shanxi Province is the lowest(0.662);(2) the degree of optimization of industrial structure is negatively related to energy consumption per unit output value and the proportion of heavy industry; and(3) overall, central China should maintain or moderately increase the proportions of resource-based industry, greatly increase the proportions of manufacturing, including transport and telecommunications equipment, computers and other electronic equipment, and moderately reduce the proportions of smelting and pressing of metals and non-metal mineral products. In terms of service industries, the region should greatly increase the proportions of the production and supply of natural gas and tap water, moderately reduce or maintain the proportions of transport and storage as well as tourism, and maintain or moderately reduce the proportions of wholesale trade, retail trade and catering services.展开更多
基金Project(2010CB630901)supported by the National Basic Research Program of ChinaProject(2013M531814)supported by the 53rd China Postdoctoral Science Foundation
文摘In order to improve the bio-oxidation efficiency of Axi refractory gold concentrate, a two-step process including a high temperature chemical oxidation and a subsequent bio-oxidation, combined with p H control during the bio-oxidation step was used. The results revealed that the optimum mode was to maintain solution p H at 1.0-1.2 during the biological oxidation stage. Under this condition, the activity of mixed culture could be sustained and the formation of jarosite could be diminished, thus the oxidation efficiency was improved. The oxidation levels of iron and sulfur were improved by 12.50% and 15.49%, and the gold recovery was increased by 21.02%. Therefore, the two-step process combined with p H control is an effective method for oxidizing the biohydrometallurgical process of Axi gold concentrate, and it will have a broad prospect of application in dealing with complex refractory gold concentrate.
文摘In this work, different flotation–preoxidation–cyanidation methods are considered for treating a lowgrade refractory gold ore. On the one hand, the results of selective flotation show that 22% and 31.1%of total Sb and As, respectively, remained in the final tailings and only about 28% of the total Au remained for further cyanidation processes. On the other hand, in bulk method of flotation the maximum Au recovery of 90.6% achieved after 60 min of flotation at the grind size with K80 of 146 micron. In addition, the bulk flotation method resulted in the concentrate with low concentrations of Sb and As elements. To improve the recovery of low-grade refractory gold ores, flotation should be followed by roasting, biological, or pressure oxidation processes so that the gold could be liberated prior to cyanidation processes. It is also found that the pressure oxidation pre-treatment of the concentrates prior to cyanidation may yield high gold recoveries of over than 83%. In these processes, recoveries are controlled by the temperature and the oxygen partial pressure in the solvent. However, by utilizing the bio-oxidation technique, the oxidation of sulfur to sulfate cannot be completed and, consequently, the gold recovery may be limited to only 72.2%.
基金Projects(51774332,U1932129,51804350,51934009)supported by the National Natural Science Foundation of ChinaProject(2018JJ1041)supported by the Natural Science Foundation of Hunan Province,China。
文摘Chalcopyrite is one of the most important copper minerals;however,the extracted efficiency of chalcopyrite is still not satisfactory in hydrometallurgy owing to its high lattice energy which leads to its low dissolution kinetics.To overcome the difficulties,many advanced technologies have been developed,including the selection of high effectively bacteria,the inhibition of the passivation film adhered onto the minerals surface,and the maintenance of solution redox potential under an optimum range.Up to date,considerable researches on the first two terms have been summarized,while the overview of the last term has been rarely reported.Based on corresponding works in recent years,key trends and roles of solution redox potential in copper hydrometallurgy,including its definition,effect and maintenance,have been introduced in this review.
文摘The corrosive electrochemistry of jamesonite was studied by cyclic voltammetry. Every peak in voltammograms was identified through thermodynamic calculation. The results show an irreversible electrode process by the strong adsorption of oxidation elemental sulfur on jamesonite. A deficient-metal and sulfur-rich compound is formed under the potential of 80 mV at pH 6.86. The passive action by elemental sulfur occurs from 80 to 470 mV and S2O2-3, SO2-4 are produced at potential over 470 mV. The anodic peak producing SO2-4 is inhibited due to the deposition of PbSO4 at higher potential in Na2SO4 solution. The corrosive action of jamesonite becomes strong and the redox characterization similar to PbS, FeS and Sb2S3 appears at pH 9.18.
基金Project(51474248)supported by the National Natural Science Foundation of China
文摘The oxygen-enriched direct smelting of jamesonite concentrate was carried out at 1250℃by changing the slag composition.The effects of Fe/SiO2 and Ca O/SiO2 mass ratios on the metal recovery rate as well as metal content in slag were investigated.Experimental results indicated that the metal(Pb+Sb)recovery rate was up to 88.30%,and metal(Pb+Sb)content in slag was below 1 wt.%under the condition of slag composition of 21-22 wt.%Fe,19-20 wt.%SiO2 and 17-18 wt.%Ca O with Fe/SiO2 mass ratio of 1.1:1 and Ca O/SiO2 mass ratio of 0.9:1.The microanalysis of the alloy and slag demonstrated that the main phases in the alloy contained metallic Pb,metallic Sb and a small amount of Cu2 Sb and Fe Sb2 intermetallic compounds.The slag was mainly composed of kirschsteinite and fayalite.Zinc in the raw material was mainly oxidized into the slag phase in the form of zinc oxide.
基金Project(2012BAK09B02-05) supported by the National Key Technology R&D Program of China during the Twelfth Five-year PeriodProject(51274250) supported by the National Natural Science Foundation of China
文摘A single freedom degree model of drilling bit-rock was established according to the vibration mechanism and its dynamic characteristics. Moreover, a novel identification method of rock and soil parameters for vibration drilling based on the fuzzy least squares(FLS)-support vector machine(SVM) was developed, in which the fuzzy membership function was set by using linear distance, and its parameters, such as penalty factor and kernel parameter, were optimized by using adaptive genetic algorithm. And FLS-SVM identification on rock and soil parameters for vibration drilling was made by changing the input/output data from single freedom degree model of drilling bit-rock. The results of identification simulation and resonance column experiment show that relative error of natural frequency for some hard sand from identification simulation and resonance column experiment is 1.1% and the identification precision based on the fuzzy least squares-support vector machine is high.
基金the Key Laboratory of Resources of Nonferrous Metals Ministry of Education (Central South University) for the laboratories and financial support
文摘In order to utilize low-grade manganese ore resources effectively, a hydrometallurgical process was developed for manganese extraction in dilute sulfuric acid medium, and the kinetics of leaching manga- nese was also investigated. At room temperature, manganese from low-grade manganese carbonate ores was extracted by sulfuric acid leaching without reductants. During the extracting process, single-factor analysis method was used to evaluate the effects of grinding fineness, sulfuric acid concentration, liquid-to-solid ratio, agitation rate and leaching time on the leaching efficiencies of Mn and Fe. The optimal leaching conditions are determined as coarse particles of below 2 mm size (without ball-milling), sulfuric acid concentration of 0.86 mol/L, liquid-to-solid ratio of 5:1, agitation rate of 150 r/rain and leaching for 180 min at room temperature. Under the optimal conditions, the leaching efficiencies of Mn and Fe are 96.21g and 13.35%, respectively. In addition, through the experiments at different temper- atures, it is found that the leaching process follows the shrinking core model under the conditions of changing acid concentration and intermittent reaction device. Moreover, the apparent activations of effective diffusion and chemical reaction in the kinetic model are calculated to be 18.83 and 27.15 kJ/mol, respectively.
文摘In order to effectively avoid the defects of a traditional discounted cash flow method, a trinomial tree pricing model of the real option is improved and used to forecast the investment price of mining. Taking Molybdenum ore as an example, a theoretical model for the hurdle price under the optimal investment timing is constructed. Based on the example data, the op- tion price model is simulated. By the model, mine investment price can be computed and forecast effectively. According to the characteristics of mine investment, cut-off grade, reserve estimation and mine life in different price also can be quantified. The result shows that it is reliable and practical to enhance the accuracy for mining investment decision.
文摘The modelling and optimization for the alkaline sulphide leaching of a complex copper concentrate containing 1.69% Sb and 0.14% Sn were studied.Response surface methodology,in combination with central composite face-centred design(RSM-CCF),was used to optimise the operating parameters.The leaching temperature,sulphide ion concentration and solid concentration were chosen as the variables,and the response parameters were antimony and tin recovery,and the time required to achieve 90% Sb dissolution.It was confirmed that the leaching process was strongly dependent on the reaction temperature as well as the sulphide ion concentration without any significant dependence on the solid concentration.Furthermore,a mathematical model was constructed to characterise the leaching behaviour.The results from the model allow identification of the most favourable leaching conditions.The model was validated experimentally,and the results show that the model is reliable and accurate in predicting the leaching process.
基金Project(50974041) supported by the National Natural Science Foundation of China Project(20090450112) supported by the Postdoctoral Foundation of ChinaProject(20093910) supported by the Natural Science Foundation of Liaoning Province, China
文摘In order to maximize the overall economic gain from a metal mine operation, selection of cutoff grades must consider two important aspects: the time value of money and the spatial variation of the grade distribution in the deposit. That is, cutoff grade selection must be dynamic with respect to both time and space. A newly developed method that fulfills these requirements is presented. In this method, the deposit or a portion of it under study is divided into "decision units" based on the mining method and sample data. The statistical grade distribution and the grade-tonnage relationship of each decision unit are then computed based on the samples falling in the unit. Each decision unit with its grade-tonnage relationship is considered as a stage in a dynamic programming scheme and the problem is solved by applying a forward dynamic programming based algorithm with an objective function of maximizing the overall net present value (NPV). A software package is developed for the method and applied to an underground copper mine in Africa.
文摘89 Au geochemical anomalies are delineated by using 1/200000 regional geochemical exploration data. By researching regional geochemical characteristics and the relationship with the geological background, the author points out that: the main factors causing high background of Au geochemical anomalies are Gaixian and Dashiqiao formation of Liaohe group, intrusions of Mesozoic intermediate-acid intrusive rocks. The elements combination types of typical anomalies are determined by using factorial analysis,cluster analysis and other mathematical methods with the combination of elements association in typical anomalies:the composite anomaly of Baiyun gold deposits is Au-As-Sb, Maoling gold deposit is Au-As- Bi-Mo, Wulong gold deposits is Au-As-Bi-W, Xiaotongjiapuzi gold deposit is Au-As-Bi-Mo-Sb. By using multivariate statistical analysis method,62 ore-caused anomaly are preferred in 89 Au geochemical anomalies delineated. On this basis, the 62 anomalies are divided into 4 kinds of anomaly types reference to elements combination types of typical anomalies,the classification results of ore-caused anomalies are: 4 geochemical anomalies of Baiyun type,36 geochemical anomalies of Maoling type,11 geochemical anomalies of Wulong type, 11 geochemical anomalies of Xiaotongjapuzi type. According to the results, the prospecting direction is provided for the futme of gold exploration.
基金National Natural Science Foundation of China,No.41271146,No.41201171
文摘Optimizing industrial structure is an important research object of human-economic geography, and it is also the object of government departments to strengthen macro-control. This has become even greater problem that China has entered the "new normal" in recent years. The study uses a multi-regional input-output model, with linear programming to build an optimal model of industrial structure as well as a model of optimization degree under the energy constraint. The results of the study revealed that:(1) the degree of optimization of industrial structure in Anhui Province is optimal(0.763), while that of Shanxi Province is the lowest(0.662);(2) the degree of optimization of industrial structure is negatively related to energy consumption per unit output value and the proportion of heavy industry; and(3) overall, central China should maintain or moderately increase the proportions of resource-based industry, greatly increase the proportions of manufacturing, including transport and telecommunications equipment, computers and other electronic equipment, and moderately reduce the proportions of smelting and pressing of metals and non-metal mineral products. In terms of service industries, the region should greatly increase the proportions of the production and supply of natural gas and tap water, moderately reduce or maintain the proportions of transport and storage as well as tourism, and maintain or moderately reduce the proportions of wholesale trade, retail trade and catering services.