[Objective] The paper was to compare the infrared spectra of straight guard hairs of leopard cat and golden cat. [Method] The straight guard hairs of leopard cat and golden cat were detected and analyzed by FTIR (Fou...[Objective] The paper was to compare the infrared spectra of straight guard hairs of leopard cat and golden cat. [Method] The straight guard hairs of leopard cat and golden cat were detected and analyzed by FTIR (Fourier Transform Infrared Spectroscopy). [Result] There was significant interspecific difference in the infrared spectra and second derivative spectra for the middle part of guard hair. An evident M-shaped bimodal absorption peak appeared in golden cat at 648 and 654 cm-1, respectively, while did not appear in leopard cat. The second derivative spec-tra of golden cat at wave numbers from 709 to 763 cm -1 were mainly unimodal peaks with strong peak intensity, while that of leopard cat mainly was M-shaped bi-modal absorption peak with weak peak intensity. It indicated that there was obvious difference in the structure of protein side chain in guard hairs of these two animals. [Conclusion] The FTIR analysis showed great application foreground in the study of animal hairs for interspecific identification.展开更多
The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized throu...The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.展开更多
The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as cera...The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as ceramic pigments covering the yellow-ochre-brown palette. The formulations containing Fe(Ⅲ) are novel compositions not included in the commercial rutile pigments. The materials were characterized by XRD (X-ray diffraction) analysis and FTIR (Fourier transformed infrared spectroscopy). The transition temperature from anatase-to-rutile was estimated by the evolution of the spectral patterns. This crystal phase transition is responsible of the color formation. A higher distortion of TiO6 octahedra is observed in the case of (FeSb) containing cells which contribute to the enhancement of the light absorption. The coloring performance of all the formulations were evaluated by enameling the mixtures containing 5% pigments and commercial frits representative of single and double firing industrial processes. The chromatic values obtained are in the yellow to brown domain of the chromatic plot, depending on the composition of the pigment-frit batch. In the case of the Fe-glazes, and particularly the combination (FeNb), the chromatic values are close to the best yellow tinting. This new FeNb-rutile pigment could be a more benign substitute of Cr-yellow pigments. The homogeneity of the enamels was confirmed by SEM (scanning electron microscopy)-EDAX (energy dispersive X-ray analysis) microscopy.展开更多
Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as redu...Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.展开更多
The metal-organic framework Zn4O[1,4-benzenedicarboxylate]3(Zn4O[CO2-C6H4-CO2]3,commonly known as MOF-5,was prepared by the ultrasonic irradiation method.The catalyst was characterized by X-ray diffraction(XRD) and Fo...The metal-organic framework Zn4O[1,4-benzenedicarboxylate]3(Zn4O[CO2-C6H4-CO2]3,commonly known as MOF-5,was prepared by the ultrasonic irradiation method.The catalyst was characterized by X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy.It was then used as the catalyst for the preparation of polycarbonate diol(PCDL) via the transesterification between diphenyl carbonate(DPC) and 1,6-hexandiol(1,6-HD).Its catalytic activity in the transesterification process is evaluated by the yield of phenol,and its catalytic activity in the polycondensation process is determined by the number-average molecular weight(Mn) and the hydroxyl value.Compared to the triethylenediamine(C6H12N2),Mg-Al layered double hydroxide(Mg-Al LDH),sodium ethoxide(C2H5ONa) and sodium methoxide(CH3ONa),MOF-5 exhibits highest catalytic activity for the preparation of PCDL.Under reaction conditions(n(1,6-HD)/n(DPC) = 1.2,w(catalyst) = 0.03%,198 ℃),the yield of phenol is up to 90.1% and the PCDL shows highest Mn and lowest hydroxyl value.展开更多
A novel metal-free photocatalyst--sulfur/graphene (S/GR) composite--has been synthesized using a facile one-pot, two-step hydrothermal method with thiosulfate and graphene oxide (GO) as precursors. A green reducta...A novel metal-free photocatalyst--sulfur/graphene (S/GR) composite--has been synthesized using a facile one-pot, two-step hydrothermal method with thiosulfate and graphene oxide (GO) as precursors. A green reductant--L-ascorbic add--was used to transform GO to GR under mild conditions. The photocatalyst powders were characterized by Fourier transform infrared spectroscop, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. Experimental tests were conducted on the photocatalytic decomposition of methyl orange (MO) by different catalysts. Compared to pure oL-S, the as-prepared S/GR composite showed much enhanced photocatalytic activity for the degradation of MO under both UV and solar light. The presence of GR also greatly increased the hydrophilicity and adsorption capacity of the catalyst material. The results indicate that the incorporation of GR with a-S results in a synergistic effect for the S-based photocatalysts offering more effective environmental applications.展开更多
基金Supported by National Special Fund for Forestry Research in the Public Interest(201004094)~~
文摘[Objective] The paper was to compare the infrared spectra of straight guard hairs of leopard cat and golden cat. [Method] The straight guard hairs of leopard cat and golden cat were detected and analyzed by FTIR (Fourier Transform Infrared Spectroscopy). [Result] There was significant interspecific difference in the infrared spectra and second derivative spectra for the middle part of guard hair. An evident M-shaped bimodal absorption peak appeared in golden cat at 648 and 654 cm-1, respectively, while did not appear in leopard cat. The second derivative spec-tra of golden cat at wave numbers from 709 to 763 cm -1 were mainly unimodal peaks with strong peak intensity, while that of leopard cat mainly was M-shaped bi-modal absorption peak with weak peak intensity. It indicated that there was obvious difference in the structure of protein side chain in guard hairs of these two animals. [Conclusion] The FTIR analysis showed great application foreground in the study of animal hairs for interspecific identification.
文摘The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of Si O2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy(SEM), nitrogen adsorption,transform electron microscopy(TEM) and in situ Fourier transform infrared(FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylbenzene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.
文摘The family of Cr(Ⅲ) and Fe(Ⅲ)-doped rutile pigments of nominal composition (M^ⅢM^V)xTi1-2xO2, with M^Ⅲ = Cr(Ⅲ) or Fe(Ⅲ) and M'(V) = Sb, Nb, Ta, with x = 0.03, 0.15 and 0.25 were investigated as ceramic pigments covering the yellow-ochre-brown palette. The formulations containing Fe(Ⅲ) are novel compositions not included in the commercial rutile pigments. The materials were characterized by XRD (X-ray diffraction) analysis and FTIR (Fourier transformed infrared spectroscopy). The transition temperature from anatase-to-rutile was estimated by the evolution of the spectral patterns. This crystal phase transition is responsible of the color formation. A higher distortion of TiO6 octahedra is observed in the case of (FeSb) containing cells which contribute to the enhancement of the light absorption. The coloring performance of all the formulations were evaluated by enameling the mixtures containing 5% pigments and commercial frits representative of single and double firing industrial processes. The chromatic values obtained are in the yellow to brown domain of the chromatic plot, depending on the composition of the pigment-frit batch. In the case of the Fe-glazes, and particularly the combination (FeNb), the chromatic values are close to the best yellow tinting. This new FeNb-rutile pigment could be a more benign substitute of Cr-yellow pigments. The homogeneity of the enamels was confirmed by SEM (scanning electron microscopy)-EDAX (energy dispersive X-ray analysis) microscopy.
基金Supported by the National Natural Science Foundation of China(21036004,21206140)Science and Technology Program of Xiamen of Fujian Province,China(3502Z20133006)
文摘Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (2006BAE02B03)Jiangsu Provincial Science & Technology Pillar Program (BE2010065)
文摘The metal-organic framework Zn4O[1,4-benzenedicarboxylate]3(Zn4O[CO2-C6H4-CO2]3,commonly known as MOF-5,was prepared by the ultrasonic irradiation method.The catalyst was characterized by X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy.It was then used as the catalyst for the preparation of polycarbonate diol(PCDL) via the transesterification between diphenyl carbonate(DPC) and 1,6-hexandiol(1,6-HD).Its catalytic activity in the transesterification process is evaluated by the yield of phenol,and its catalytic activity in the polycondensation process is determined by the number-average molecular weight(Mn) and the hydroxyl value.Compared to the triethylenediamine(C6H12N2),Mg-Al layered double hydroxide(Mg-Al LDH),sodium ethoxide(C2H5ONa) and sodium methoxide(CH3ONa),MOF-5 exhibits highest catalytic activity for the preparation of PCDL.Under reaction conditions(n(1,6-HD)/n(DPC) = 1.2,w(catalyst) = 0.03%,198 ℃),the yield of phenol is up to 90.1% and the PCDL shows highest Mn and lowest hydroxyl value.
文摘A novel metal-free photocatalyst--sulfur/graphene (S/GR) composite--has been synthesized using a facile one-pot, two-step hydrothermal method with thiosulfate and graphene oxide (GO) as precursors. A green reductant--L-ascorbic add--was used to transform GO to GR under mild conditions. The photocatalyst powders were characterized by Fourier transform infrared spectroscop, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy dispersive spectroscopy. Experimental tests were conducted on the photocatalytic decomposition of methyl orange (MO) by different catalysts. Compared to pure oL-S, the as-prepared S/GR composite showed much enhanced photocatalytic activity for the degradation of MO under both UV and solar light. The presence of GR also greatly increased the hydrophilicity and adsorption capacity of the catalyst material. The results indicate that the incorporation of GR with a-S results in a synergistic effect for the S-based photocatalysts offering more effective environmental applications.