The metal-insulator transition (MIT) of VO2 (M) nanorods was studied. It was found that there were two MITs in the differential scanning calorimetry (DSC) curves of the VO2(M) nanorods, one situated at low tem...The metal-insulator transition (MIT) of VO2 (M) nanorods was studied. It was found that there were two MITs in the differential scanning calorimetry (DSC) curves of the VO2(M) nanorods, one situated at low temperature from -3 ℃ to 19 ℃ and the other was at high temperature of 65-74℃. The low temperature MIT was always accompanied with VO2(B) nanorods, and the high temperature MIT existed singly only in pure VO2(M) nanorods. The mechanisms of these two MITs were analyzed and discussed.展开更多
The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transie...The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transient phase,primary penetration phase,and secondary penetration phase were adequately analyzed by two dimensionless parameters,i.e.,the nose shape factor N* and the diameter ratio of the rod nose and shank n.In general,N*,η and the mass erosion rate of the rod vary distinctly in different phases,i.e.,unsteady in the initial transient and the secondary penetration phases,and quasi-steady in the primary penetration phase.Furthermore,a relationship between the mass erosion of the rod and the variation in the nose shape was established.A three-phase 2D model of long-rod penetration was further constructed by considering the variations in nose shape.This research may provide a reference to improve the theoretical model of long-rod penetration.展开更多
基金V. ACKNOWLEDGMENTS This work was financially Natural Science Foundation supported by the National of China (No.51372250).
文摘The metal-insulator transition (MIT) of VO2 (M) nanorods was studied. It was found that there were two MITs in the differential scanning calorimetry (DSC) curves of the VO2(M) nanorods, one situated at low temperature from -3 ℃ to 19 ℃ and the other was at high temperature of 65-74℃. The low temperature MIT was always accompanied with VO2(B) nanorods, and the high temperature MIT existed singly only in pure VO2(M) nanorods. The mechanisms of these two MITs were analyzed and discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872118 and 12002293).
文摘The nose shape effect on long-rod penetration was investigated by establishing numerical 2D models with different original nose shapes.The variations in nose shapes and the mass erosion rate of the rods in the transient phase,primary penetration phase,and secondary penetration phase were adequately analyzed by two dimensionless parameters,i.e.,the nose shape factor N* and the diameter ratio of the rod nose and shank n.In general,N*,η and the mass erosion rate of the rod vary distinctly in different phases,i.e.,unsteady in the initial transient and the secondary penetration phases,and quasi-steady in the primary penetration phase.Furthermore,a relationship between the mass erosion of the rod and the variation in the nose shape was established.A three-phase 2D model of long-rod penetration was further constructed by considering the variations in nose shape.This research may provide a reference to improve the theoretical model of long-rod penetration.