The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was inv...The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was investigated based on a sandwich hybridization system. An increase in amino probe concentration brought about an increase in hybridization signal which reached a threshold corresponding to the saturated concentration of amino probes bounded onto a glass slide surface. Since the steric hindrance effect of nanoparticles was dominant over the influence of a surface area, the bigger gold nanoparticles led to weaker hybridization signals. The hybridization efficiency enhanced significantly with the increase of the thiol DNA modified nanoparticle concentrations. Experimental results showed that 125 μmol/L of the amino DNA probe concentration, 15 nm of the gold nanoparticle diameter, and 4.07 nmol/L of the thiol DNA modified gold nanoparticle concentration were optimal for the detection system. The hybridization signals can be improved remarkably by choosing optimal hybridization conditions.展开更多
Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering techno...Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering technology at different sintering temperatures. The phase composition, glass transition temperature (Tg), onset crystallization temperature (Tx), peak temperature (Tp) and super-cooled liquid region (ΔTx) of Fe75Zr3Si13B9 amorphous powders were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The phase transition, microstructure, mechanical properties and magnetic performance of the bulk alloys were discussed with X-ray diffractometer, scanning electron microscope (SEM), Gleeble 3500 and vibration sample magnetometer (VSM), respectively. It is found that with the increase in the sintering temperature at the pressure of 500 MPa, the density, compressive strength, micro-hardness and saturation magnetization of the sintering samples improved significantly, the amorphous phase began to crystallize gradually. Finally, the desirable amorphous and nanocrystalline magnetic materials at the sintering temperature of 863.15 K and the pressure of 500 MPa have a density of 6.9325 g/cm3, a compressive strength of 1140.28 MPa and a saturation magnetization of 1.28 T.展开更多
This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with ...This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.展开更多
Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studi...Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.展开更多
Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering...Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE).展开更多
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold sal...Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.展开更多
Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the...Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the size of the Au particles.Au(III)was partly reduced during conventional oven drying,resulting in Au aggregates.In contrast,Au(III)was preserved during microwave drying owing to rapid and uniform heating,and the Au diameter was minimized to1.4nm on Al2O3.This method can be applied to several metal oxide supports having different microwave absorption efficiencies,such as MnO2,Al2O3,and TiO2.These catalysts exhibited higher catalytic activities for CO oxidation at low temperature and for selective aerobic oxidation of sulfide than those prepared by conventional methods.展开更多
Different mass fractions (0, 5%, 10%, and 15%) of the synthesized nano SiC particles reinforced Ti-6Al-4V (Ti64) alloy metal matrix composites (MMCs) were successfully fabricated by the powder metallurgy method....Different mass fractions (0, 5%, 10%, and 15%) of the synthesized nano SiC particles reinforced Ti-6Al-4V (Ti64) alloy metal matrix composites (MMCs) were successfully fabricated by the powder metallurgy method. The effects of addition of SiC particle on the mechanical properties of the composites such as hardness and compressive strength were investigated. The optimum density (93.33%) was obtained at the compaction pressure of 6.035 MPa. Scanning electron microscopic (SEM) observations of the microstructures revealed that the wettability and the bonding force were improved in Ti64 alloy/5% nano SiCp composites. The effect of nano SiCp content in Ti64 alloy/SiCp matrix composite on phase formation was investigated by X-ray diffraction. The correlation between mechanical parameter and phase formation was analyzed. The new phase of brittle interfaced reaction formed in the 10% and 15% SiCp composite specimens and resulted in no beneficial effect on the strength and hardness. The compressive strength and hardness of Ti64 alloy/5% nano SiCp MMCs showed higher values. Hence, 5% SiCp can be considered to be the optimal replacement content for the composite.展开更多
Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared ...Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared after adding 0.01,0.02 and 0.05 wt.%of the HND nanoparticles.The AFM analyses showed that average roughness of the sol-gel film is about 6.7 nm which increases to 16.1 and 20.2 nm after incorporating 0.005 and 0.02 wt.%of the HNDs,respectively.The corrosion resistance of the coatings was tested in Harrison’s solution by means of EIS technique after 15,30,60 and 120 min immersion.The corrosion resistance of the sol-gel coating was remarkably enhanced by incorporating different contents of the HNDs and the best result was obtained for 0.01 wt.%.The results of the EIS experiments were confirmed by the potentiodynamic polarization tests.The corrosion resistance enhancement was attributed to the film compactness(due to the chemical interaction with the HNDs),formation of tortuous pathways for diffusion of the corrosive solution,and filling of the defects by the nanoparticles.However,the beneficial effect of the HNDs on the corrosion resistance gradually diminished as the content of nanoparticle was increased.Finally,the micromorphology of the sol-gel nanocomposites was studied after the corrosion tests.展开更多
The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is d...The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.展开更多
Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated...Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.展开更多
Metal nanoparticle catalysts, especially gold and its bimetallic nanoparticle catalysts, have been widely used in organic transformations as powerful and green catalysts. The concept of employing two distinct catalyst...Metal nanoparticle catalysts, especially gold and its bimetallic nanoparticle catalysts, have been widely used in organic transformations as powerful and green catalysts. The concept of employing two distinct catalysts in one reaction system, such as in cooperative and synergistic catalysis, is a powerful strategy in homogeneous catalysis. However, the adaption of such a strategy to metal nanoparticle catalysis is still under development. Recently, we have found that cooperative catalytic systems of gold/palladium bimetallic nanoparticles and Lewis acid can be used for the N‐alkylation of primary amides through hydrogen autotransfer reaction between amide and alcohol. Herein, the results of a detailed investigation into the effects of Lewis acids on this hydrogen autotransfer reac‐tion are reported. It was found that the choice of Lewis acid affected not only the reaction pathway leading to the desired product, but also other reaction pathways that produced several intermedi‐ates and by‐products. Weak Lewis acids, such as alkaline‐earth metal triflates, were found to be optimal for the desired N‐alkylation of amides.展开更多
The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate...The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.展开更多
Thermal stability of nanocrystalline Al-10wt.%Fe-5wt.%Cr bulk alloy was investigated.The initial micro-grained mixture of powders was processed for 100 h using mechanical alloying(MA)to produce nano-grained alloy.The ...Thermal stability of nanocrystalline Al-10wt.%Fe-5wt.%Cr bulk alloy was investigated.The initial micro-grained mixture of powders was processed for 100 h using mechanical alloying(MA)to produce nano-grained alloy.The processed powders were sintered using high frequency induction heat sintering(HFIHS).The microstructures of the processed alloy in the form of powders and bulk samples were investigated using XRD,FESEM and HRTEM.Microhardness and compression tests were conducted on the bulk samples for evaluating their mechanical properties.To evaluate the thermal stability of the bulk samples,they were experimented at 573,623,673 and 723 K under compression load at strain rates of 1×10^-1 and 1×10^-2 s^-1.The annealed samples exhibited a significant increase in their microhardness value of 2.65 GPa when being annealed at 723 K,as compared to 2.25 GPa of the as-sintered alloy.The bulk alloy revealed compressive strengths of 520 MPa and 450 MPa at 300 K and 723 K,respectively,when applying a strain rate of 1×10^-1 s^-1.The microstructural stability of the bulk alloy was ascribed to the formation of iron and chromium containing phases with Al such as Al6Fe,Al13Fe4 and Al13Cr2,in addition to the supersaturated solid solution(SSSS)of Cr and Fe in Al matrix.展开更多
We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,th...We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,thermogravimetric analysis,and high angle annular dark-field-scanning transmission electron microscopy characterization to show that the samples pretreated with/without DBD-plasma displayed different performances in CO oxidation.The enhanced activity was obtained on the plasma-treated samples,implying that the protective ligand was effectively removed via the plasma technique.The crystal structure of the plasma-treated samples changed markedly,suggesting that the plasma treatment could not only break the chemical bond between the gold and the protective agent but could also decompose the interlayer ions over the hydrotalcite support.The particle sizes of the gold after DBD-plasma treatment implied that it was a good way to control the size of the gold nanoparticles under mild conditions.展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 5...A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection.展开更多
The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemic...The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4.展开更多
Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and...Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.展开更多
文摘The factors that influence the colorimetric gene detection of gold label silver stain and improve the detection signals were studied. The influence of amino DNA probes and thiol DNA modified gold nanoparticles was investigated based on a sandwich hybridization system. An increase in amino probe concentration brought about an increase in hybridization signal which reached a threshold corresponding to the saturated concentration of amino probes bounded onto a glass slide surface. Since the steric hindrance effect of nanoparticles was dominant over the influence of a surface area, the bigger gold nanoparticles led to weaker hybridization signals. The hybridization efficiency enhanced significantly with the increase of the thiol DNA modified nanoparticle concentrations. Experimental results showed that 125 μmol/L of the amino DNA probe concentration, 15 nm of the gold nanoparticle diameter, and 4.07 nmol/L of the thiol DNA modified gold nanoparticle concentration were optimal for the detection system. The hybridization signals can be improved remarkably by choosing optimal hybridization conditions.
基金Project(13961001D)supported by the Key Basic Research Project of Hebei Province,ChinaProject(2013BAE08B01)supported by the National Key Technology R&D Program of China
文摘Fe75Zr3Si13B9 magnetic amorphous powders were fabricated by mechanical alloying. Bulk amorphous and nanocrystalline alloys with 20 mm in diameter and 7 mm in height were fabricated by the spark plasma sintering technology at different sintering temperatures. The phase composition, glass transition temperature (Tg), onset crystallization temperature (Tx), peak temperature (Tp) and super-cooled liquid region (ΔTx) of Fe75Zr3Si13B9 amorphous powders were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The phase transition, microstructure, mechanical properties and magnetic performance of the bulk alloys were discussed with X-ray diffractometer, scanning electron microscope (SEM), Gleeble 3500 and vibration sample magnetometer (VSM), respectively. It is found that with the increase in the sintering temperature at the pressure of 500 MPa, the density, compressive strength, micro-hardness and saturation magnetization of the sintering samples improved significantly, the amorphous phase began to crystallize gradually. Finally, the desirable amorphous and nanocrystalline magnetic materials at the sintering temperature of 863.15 K and the pressure of 500 MPa have a density of 6.9325 g/cm3, a compressive strength of 1140.28 MPa and a saturation magnetization of 1.28 T.
基金Merit-funded Science and Technology Project for Returned Oversea Scholars from Ministry of Human and Social Security of Shanxi provinceNatural Science Foundation for Young Scientists of Shanxi province(No.2011011020-2)Shanxi Province Foundation for Returness(No.2008062)
文摘This paper presents an approach to synthesis of gold nanoparticles with different morphologies and investigation of the relationship between morphologies and their optical properties.Spherical gold nanoparticles with different sizes are synthesized via reduction method.Using seed-mediated solution growth method,gold nanoparticles with shuttle,star and stick shapes can be obtained.The sizes and morphologies of the gold nanoparticles are characterized by transmission electron microscopy (TEM).The characterization results illustrate the growth process of the gold nanoparticles with different morphologies.Absorption spectroscopy and Raman spectroscopy measurements are performed to demonstrate the relationship between the morphologies and optical properties.The results of Raman characterization show that the gold nanoparticles with different morphologies can be used to probe molecules with different concentrations.
基金Project(3ZS061-A25-038) supported by the Natural Science Foundation of Gansu Province,China
文摘Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High Technology Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE).
基金supported by the Project from Institute of Chemical and Engineering Sciences (ICES), Singapore (ICES/15-1G4B01)~~
文摘Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impreg‐nation of gold salts onto a support, co‐precipitation or deposition‐precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scien‐tists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspen‐sion before immobilisation with great results in terms of catalytic activity and the morphology con‐trol of mono‐and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with im‐mense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, den‐dritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we ex‐amine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal‐, electro‐and photocatalysis.
基金supported by JSPS KAKENHI Grant Numbers JP26810098 and JP16K17943~~
文摘Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the size of the Au particles.Au(III)was partly reduced during conventional oven drying,resulting in Au aggregates.In contrast,Au(III)was preserved during microwave drying owing to rapid and uniform heating,and the Au diameter was minimized to1.4nm on Al2O3.This method can be applied to several metal oxide supports having different microwave absorption efficiencies,such as MnO2,Al2O3,and TiO2.These catalysts exhibited higher catalytic activities for CO oxidation at low temperature and for selective aerobic oxidation of sulfide than those prepared by conventional methods.
基金CISL,Department of Physics,Annamalai University for the support in using AFM and SEM for experimentation
文摘Different mass fractions (0, 5%, 10%, and 15%) of the synthesized nano SiC particles reinforced Ti-6Al-4V (Ti64) alloy metal matrix composites (MMCs) were successfully fabricated by the powder metallurgy method. The effects of addition of SiC particle on the mechanical properties of the composites such as hardness and compressive strength were investigated. The optimum density (93.33%) was obtained at the compaction pressure of 6.035 MPa. Scanning electron microscopic (SEM) observations of the microstructures revealed that the wettability and the bonding force were improved in Ti64 alloy/5% nano SiCp composites. The effect of nano SiCp content in Ti64 alloy/SiCp matrix composite on phase formation was investigated by X-ray diffraction. The correlation between mechanical parameter and phase formation was analyzed. The new phase of brittle interfaced reaction formed in the 10% and 15% SiCp composite specimens and resulted in no beneficial effect on the strength and hardness. The compressive strength and hardness of Ti64 alloy/5% nano SiCp MMCs showed higher values. Hence, 5% SiCp can be considered to be the optimal replacement content for the composite.
文摘Sol-gel coatings containing various amounts of hydroxylated nanodiamond(HND)particles were applied on the magnesium alloy for corrosion protection.The micrometric defects in the sol-gel coating completely disappeared after adding 0.01,0.02 and 0.05 wt.%of the HND nanoparticles.The AFM analyses showed that average roughness of the sol-gel film is about 6.7 nm which increases to 16.1 and 20.2 nm after incorporating 0.005 and 0.02 wt.%of the HNDs,respectively.The corrosion resistance of the coatings was tested in Harrison’s solution by means of EIS technique after 15,30,60 and 120 min immersion.The corrosion resistance of the sol-gel coating was remarkably enhanced by incorporating different contents of the HNDs and the best result was obtained for 0.01 wt.%.The results of the EIS experiments were confirmed by the potentiodynamic polarization tests.The corrosion resistance enhancement was attributed to the film compactness(due to the chemical interaction with the HNDs),formation of tortuous pathways for diffusion of the corrosive solution,and filling of the defects by the nanoparticles.However,the beneficial effect of the HNDs on the corrosion resistance gradually diminished as the content of nanoparticle was increased.Finally,the micromorphology of the sol-gel nanocomposites was studied after the corrosion tests.
文摘The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.
基金supported by the Ph.D.Program Foundation of Ministry of Education of China(20131103110002)the NNSF of China(21377008)+2 种基金National High Technology Research and Development Program(863 Program,2015AA034603)Foundation on the Creative Research Team Con-struction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Plat-form-National Materials Research Base Construction~~
文摘Ordered mesoporous Mn2O3 (meso‐Mn2O3) and meso‐Mn2O3‐supported Pd, Pt, and Pd‐Pt alloy x(PdyPt)/meso‐Mn2O3; x = (0.10?1.50) wt%; Pd/Pt molar ratio (y) = 4.9?5.1 nanocatalysts were prepared using KIT‐6‐templated and poly(vinyl alcohol)‐protected reduction methods, respectively.The meso‐Mn2O3 had a high surface area, i.e., 106 m2/g, and a cubic crystal structure. Noble‐metalnanoparticles (NPs) of size 2.1?2.8 nm were uniformly dispersed on the meso‐Mn2O3 surfaces. AlloyingPd with Pt enhanced the catalytic activity in methane combustion; 1.41(Pd5.1Pt)/meso‐Mn2O3gave the best performance; T10%, T50%, and T90% (the temperatures required for achieving methaneconversions of 10%, 50%, and 90%) were 265, 345, and 425 °C, respectively, at a space velocity of20000 mL/(g?h). The effects of SO2, CO2, H2O, and NO on methane combustion over1.41(Pd5.1Pt)/meso‐Mn2O3 were also examined. We conclude that the good catalytic performance of1.41(Pd5.1Pt)/meso‐Mn2O3 is associated with its high‐quality porous structure, high adsorbed oxygen species concentration, good low‐temperature reducibility, and strong interactions between Pd‐Pt alloy NPs and the meso‐Mn2O3 support.
基金partially supported by a Grant-in-Aid for Science Research from the Japan Society for the Promotion of Science(JSPS)the Global COE Program,the University of Tokyo,the Japan Science and Technology Agency(JST)the Ministry of Education,Culture,Sports,Science and Tech-nology(MEXT,Japan)
文摘Metal nanoparticle catalysts, especially gold and its bimetallic nanoparticle catalysts, have been widely used in organic transformations as powerful and green catalysts. The concept of employing two distinct catalysts in one reaction system, such as in cooperative and synergistic catalysis, is a powerful strategy in homogeneous catalysis. However, the adaption of such a strategy to metal nanoparticle catalysis is still under development. Recently, we have found that cooperative catalytic systems of gold/palladium bimetallic nanoparticles and Lewis acid can be used for the N‐alkylation of primary amides through hydrogen autotransfer reaction between amide and alcohol. Herein, the results of a detailed investigation into the effects of Lewis acids on this hydrogen autotransfer reac‐tion are reported. It was found that the choice of Lewis acid affected not only the reaction pathway leading to the desired product, but also other reaction pathways that produced several intermedi‐ates and by‐products. Weak Lewis acids, such as alkaline‐earth metal triflates, were found to be optimal for the desired N‐alkylation of amides.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘The exploration of cost-effective non-noble-metal electrocatalysts is highly imperative to replace the state-of-the-art platinum-based catalysts for oxygen reduction reaction(ORR). Here, we prepared cobalt phosphonate-derived N-doped cobalt phosphate/carbon nanotube hybrids(Co Pi C-N/CNTs) by hydrothermal treatment of N-containing cobalt phosphonate and oxidized carbon nanotubes(o-CNT) followed by high-temperature calcination under nitrogen atmosphere. The resultant Co Pi C-N/CNT exhibits a superior electrocatalytic performance for the ORR in alkaline media, which is equal to the commercial Pt/C catalyst in the aspect of half-wave potential, onset potential and diffuse limiting current density. Furthermore, the excellent tolerance to methanol and strong durability outperform those of commercial Pt/C. It is found that cobalt phosphonate-derived N-doped cobalt phosphate and the in-situ formed graphitic carbons play key roles on the activity enhancement. Besides, introducing a suitable amount of CNTs enhances the electronic conductivity and further contributes to the improved ORR performance.
基金funded by the National Plan for Science,Technology and Innovation(MAARIFAH)King Abdulaziz City for Science and Technology,Kingdom of Saudi Arabia,Award Number(12-NAN2635-02)
文摘Thermal stability of nanocrystalline Al-10wt.%Fe-5wt.%Cr bulk alloy was investigated.The initial micro-grained mixture of powders was processed for 100 h using mechanical alloying(MA)to produce nano-grained alloy.The processed powders were sintered using high frequency induction heat sintering(HFIHS).The microstructures of the processed alloy in the form of powders and bulk samples were investigated using XRD,FESEM and HRTEM.Microhardness and compression tests were conducted on the bulk samples for evaluating their mechanical properties.To evaluate the thermal stability of the bulk samples,they were experimented at 573,623,673 and 723 K under compression load at strain rates of 1×10^-1 and 1×10^-2 s^-1.The annealed samples exhibited a significant increase in their microhardness value of 2.65 GPa when being annealed at 723 K,as compared to 2.25 GPa of the as-sintered alloy.The bulk alloy revealed compressive strengths of 520 MPa and 450 MPa at 300 K and 723 K,respectively,when applying a strain rate of 1×10^-1 s^-1.The microstructural stability of the bulk alloy was ascribed to the formation of iron and chromium containing phases with Al such as Al6Fe,Al13Fe4 and Al13Cr2,in addition to the supersaturated solid solution(SSSS)of Cr and Fe in Al matrix.
文摘We used a dielectric barrier discharge(DBD)plasma technique to eliminate the protective ligand of ZnAl-hydrotalcite-supported gold nanoclusters.We used X-ray powder diffraction,ultraviolet-visible spectrophotometry,thermogravimetric analysis,and high angle annular dark-field-scanning transmission electron microscopy characterization to show that the samples pretreated with/without DBD-plasma displayed different performances in CO oxidation.The enhanced activity was obtained on the plasma-treated samples,implying that the protective ligand was effectively removed via the plasma technique.The crystal structure of the plasma-treated samples changed markedly,suggesting that the plasma treatment could not only break the chemical bond between the gold and the protective agent but could also decompose the interlayer ions over the hydrotalcite support.The particle sizes of the gold after DBD-plasma treatment implied that it was a good way to control the size of the gold nanoparticles under mild conditions.
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
基金Supported by the Ministry of Science and Technology of China(No.2012YQ090194)the National Natural Science Foundation of China(No.51473115)
文摘A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection.
基金supported by the National Natural Science Foundation of China(21677004,21876006,and 21622701)the National High Technology Research and Development Program of China(863 Program,2015AA034603)~~
文摘The meso-Co3O4 and AgxAuyPd/meso-Co3O4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods,respectively.Various techniques were used to characterize physicochemical properties of these materials.Catalytic performance of the samples was evaluated for methanol combustion.The cubically crystallized Co3O4 support displayed a three-dimensionally ordered mesoporous structure.The supported noble metal nanoparticles(NPs)possessed a surface area of 115.125 m^2/g,with the noble NPs(average size=2.8.4.5 nm)being uniformly dispersed on the surface of meso-Co3O4.Among all of the samples,0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 showed the highest catalytic activity(T50%=100℃and T90%=112℃at a space velocity of 80000 mL(g^–1 h^–1).The partial deactivation of the 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 sample due to water vapor or carbon dioxide introduction was reversible.It is concluded that the good catalytic performance of 0.68 wt%Ag0.75Au1.14Pd/meso-Co3O4 was associated with its highly dispersed Ag0.75Au1.14Pd alloy NPs,high adsorbed oxygen species concentration,good low-temperature reducibility,and strong interaction between Ag0.75Au1.14Pd alloy NPs and meso-Co3O4.
文摘Unveiling the pore-size performance of metal organic frameworks(MOFs)is imperative for controllable design of sophisticated catalysts.Herein,UiO-66 with distinct macropores and mesopores were intentionally created and served as substrates to create advanced CdS/UiO-66 catalysts.The pore size impacted the spatial distribution of CdS nanoparticles(NPs):CdS tended to deposit on the external surface of mesoporous UiO-66,but spontaneously penetrated into the large cavity of macroporous UiO-66 nanocage.Normalized to unit amount of CdS,the photocatalytic reaction constant of macroporous CdS/UiO-66 over 4-nitroaniline reduction was~3 folds of that of mesoporous counterpart,and outperformed many other reported state-of-art CdS-based catalysts.A confinement effect of CdS NPs within UiO-66 cage could respond for its high activity,which could shorten the electron-transport distance of NPs-MOFs-reactant,and protect the active CdS NPs from photocorrosion.The finding here provides a straightforward paradigm and mechanism to rationally fabricate advance NPs/MOFs for diverse applications.