期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于RU-SMOTE-SVM的金融市场极端风险预警研究 被引量:11
1
作者 林宇 黄迅 徐凯 《预测》 CSSCI 北大核心 2013年第4期15-20,共6页
本文以上证综指和深证成指为研究对象,将随机欠采样(RU)、合成少数类过采样(SMOTE)与传统支持向量机(SVM)相结合,提出了一种改进的SVM模型——RU-SMOTE-SVM模型来预测我国金融市场极端风险,并与传统SVM、SMOTE-SVM、RU-SMOTE-NN和RU-SMO... 本文以上证综指和深证成指为研究对象,将随机欠采样(RU)、合成少数类过采样(SMOTE)与传统支持向量机(SVM)相结合,提出了一种改进的SVM模型——RU-SMOTE-SVM模型来预测我国金融市场极端风险,并与传统SVM、SMOTE-SVM、RU-SMOTE-NN和RU-SMOTE-DT进行比较。实证结果表明,RU-SMOTE-SVM既优于传统SVM模型,又比SMOTE-SVM具有更高的预测精度,同时还展示出比RU-SMOTE-NN和RU-SMOTE-DT更为优越的预测性能。 展开更多
关键词 随机欠采样 合成少数类过采样 支持向量机 金融市场极端风险 预警模型
下载PDF
不平衡样本下的金融市场极端风险预警研究 被引量:4
2
作者 温廷新 孔祥博 《计算机工程与应用》 CSCD 北大核心 2020年第8期256-260,共5页
为了提高金融市场极端风险识别及预警能力,采用沪深300指数作为研究数据,通过少数类样本过采样算法(SMOTE)解决样本不均衡问题,利用因子分析提取特征,通过粒子群(PSO)优化的最小二乘支持向量机(LSSVM)算法构建(SMOTE-PSO-LSSVM)预测模... 为了提高金融市场极端风险识别及预警能力,采用沪深300指数作为研究数据,通过少数类样本过采样算法(SMOTE)解决样本不均衡问题,利用因子分析提取特征,通过粒子群(PSO)优化的最小二乘支持向量机(LSSVM)算法构建(SMOTE-PSO-LSSVM)预测模型。使用SMOTE-PSO-LSSVM模型对2007—2010年沪深300指标样本进行预测,样本含极端风险样本193条,模型成功识别风险样本154条,识别准确率达到了83.1%。研究结果表明SMOTE-PSO-LSSVM模型对金融风险数据识别能力较强,能够较为精准地识别风险样本,且求解速度快运行效率高,比传统BP网络和支持向量机等方法性能更优秀。该研究结论对金融市场的风险识别、市场趋势把控、股市交易管制以及投资者决策具有一定意义。 展开更多
关键词 少数类过采样 金融市场极端风险 粒子群 最小二乘支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部