Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohol...Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohols to produce higher ketones under mild conditions. This is of importance to the construction of a C-C bond. Various substrates were used in the reaction system, and moderate to good yields were obtained. The catalysts can be reused at least five times without decrease of yield. The control experiment and XAFS characterization results showed that hydrogen au- to-transfer occurred on metallic Pd sites even under oxidative conditions. On alloying with Au, the Pd sites became resistant to oxidation and readily abstracted the β-H of the alcohols and transferred the hydride to the C=C bond in the reaction intermediate to give the saturated product.展开更多
基金supported by the National Natural Science Foundation of China (21373206, 21202163, 21303194, 21476227, 21503219)~~
文摘Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohols to produce higher ketones under mild conditions. This is of importance to the construction of a C-C bond. Various substrates were used in the reaction system, and moderate to good yields were obtained. The catalysts can be reused at least five times without decrease of yield. The control experiment and XAFS characterization results showed that hydrogen au- to-transfer occurred on metallic Pd sites even under oxidative conditions. On alloying with Au, the Pd sites became resistant to oxidation and readily abstracted the β-H of the alcohols and transferred the hydride to the C=C bond in the reaction intermediate to give the saturated product.