The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interraci...The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interracial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface. The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.展开更多
Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface are...Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.展开更多
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.
文摘The interracial phenomena of the Sn-Pb solder droplet on and needle-like AuSn4 are formed at the interface after Au/Ni/Cu pad are investigated. A continuous AuSn2 the liquid state reaction (soldering). The interracial reaction between the solder and Au layer continues during solid state aging with AuSn4 breaking off from the interface and felling into the solder. The kinetics of Au layer dissolution and diffusion into the solder during soldering and aging is analyzed to elucidate intermetallic formation mechanism at the solder/Au pad interface. The concentration of Au near the solder/pad interface is identified to increase and reach the solubility limit during the period of liquid state reaction. During solid state reaction, the thickening of Au-Sn compound is mainly controlled by element diffusion.
基金partly supported by the National Natural Science Foundation of China(21673033)Sichuan Science and Technology Program(2020071)the Fundamental Research Founds for the Central Universities(ZYGX2019J024).
文摘Porous metal architectures are widely adopted as three-dimensional conducting scaffolds for constructing Li metal composite anodes,whereas their macropores hinder their practical application due to limited surface area and large pore size of few hundred micrometers.In this work,a network of Li_(x)Cu solid solution alloy nanowires is in situ formed via infiltrating molten Li-Cu alloy into Ni foam and subsequent cooling treatment,whereby a three-component composite anode consisting of Li metal,Li_(x)Cu alloy,and Ni foam is fabricated.The Li_(x)Cu nanowires nested as secondary frame split the macropores into micropores,enlarging the active surface area and inducing uniform Li deposition significantly.The lithiophilicity of the alloy wires and the shrunken void size built by the hierarchical architecture can further tune the nucleation and growth behavior of Li.The multiscale synergetic effect between the primary and secondary scaffold guarantees the composite anode sheet with extraordinarily long-term cycling stability even under high current rates.