The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically...The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.展开更多
The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demo...The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.展开更多
A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was develo...A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.展开更多
The precipitation behaviors of 2124 aluminum alloy under the conditions of artificial aging (AA), creep aging (CA) and creep aging with pre-deformation (PCA) were investigated by means of mechanical property and...The precipitation behaviors of 2124 aluminum alloy under the conditions of artificial aging (AA), creep aging (CA) and creep aging with pre-deformation (PCA) were investigated by means of mechanical property and microstructure. The results show that the mechanical properties of CA treated sample decrease significantly compared with AA treated sample. The yield strength of the CA treated sample falls by 14%, the tensile strength falls by 6.2%, and the elongation falls by 21%. Nevertheless, the mechanical properties of PCA sample are improved obviously, close to the AA treated sample. Moreover, the generation and control mechanisms of the precipitation orientation effect in 2124 aluminum alloy were studied. It is deduced that the key mechanism lies in the effect of dislocation.展开更多
The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceram...The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.展开更多
In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. T...In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. The results show that the size distributions of β phases obey the logarithmic normal distribution. The Brinell hardness tests were also carried out. The tested hardness results show that the hardness distribution of the casting cooled in water is evener than that cooled in air, and its averaged value is higher than that cooled in air.展开更多
In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt...In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.展开更多
The plastic deformation showing instability has been a subject receiving considerable attention for centuries due to its importance in many industrial processes.For Al alloys,the major instability is the Portevin-Le C...The plastic deformation showing instability has been a subject receiving considerable attention for centuries due to its importance in many industrial processes.For Al alloys,the major instability is the Portevin-Le Chatelier(PLC)effect that appears within a certain region of strain,strain rate and temperature.It manifests itself on the stress−strain curve as serrations associating with the rapid accumulation of plastic deformation within inclined slip bands.The PLC effect has severe practical consequences,which damages the surface quality after the sheet metal forming process and threatens the tensile ductility.Therefore,it is crucial to investigate the fundamental mechanisms underlying the PLC effect and in particular to investigate how it can be tempered by tailoring the material microstructure.In this paper,we review the common interpretations of the PLC effect and summarize the experimental results of the effects of the precipitation and the grain refinement,two conventional strengthening methodologies in Al alloys,on the serrated plastic flow.The effectiveness of solute atom clusters in suppressing the PLC effect is emphasized.展开更多
Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block...Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.展开更多
Stress relaxation ageing behavior of pre-deformed AA2219 is studied through stress relaxation age experiments and finite element(FE) simulation. The results show that the stress can promote the process of ageing preci...Stress relaxation ageing behavior of pre-deformed AA2219 is studied through stress relaxation age experiments and finite element(FE) simulation. The results show that the stress can promote the process of ageing precipitation, and shorten the time to reach the peak strength. Meanwhile,the residual stress and yield strength increase along with the increase in the initial stress. Based on microstructure evolution and ageing strengthening theory,a unified constitutive model is established and incorporated into the FE simulation model through a user subroutine. It is found that the relative error of the radius is 3.6% compared with the experimental result and the springback is 16.8%. This indicates that the proposed stress relaxation ageing constitutive model provides a good prediction on the springback of such stiffened panel during its ageing process.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.52075423,U2141214).
文摘The coupling effects of electrical pulse,temperature,strain rate,and strain on the flow behavior and plasticity of 5182-O aluminum alloy were investigated and characterized.The isothermal tensile test and electrically-assisted isothermal tensile test were performed at the same temperature,and three typical models were further embedded in ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect.The results show that electric pulse reduces the deformation resistance but enhances the elongation greatly.The calibration accuracy of the proposed modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved compared to the modified Kocks−Mecking model.Moreover,the artificial neural network model is very suitable to describe the macromechenical response of materials under the coupling effect of different variables.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University, ChinaProject (20102024) supported by the Natural Science Foundation of Liaoning Province, China
文摘The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.
基金Projects (90716005, 10802055, 10972153) supported by the National Natural Science Foundation of ChinaProject (2007021005) supported by the Natural Science Foundation of Shanxi Province, China+2 种基金Project supported by the Postdoctoral Science Foundation of ChinaProject supported by the Homecomings Foundation, ChinaProject supported by the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China
文摘A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.
基金Projects(2010CB731700,2012CB619500)supported by the National Basic Research Program of ChinaProject(51375503)supported by the National Natural Science Foundation of China
文摘The precipitation behaviors of 2124 aluminum alloy under the conditions of artificial aging (AA), creep aging (CA) and creep aging with pre-deformation (PCA) were investigated by means of mechanical property and microstructure. The results show that the mechanical properties of CA treated sample decrease significantly compared with AA treated sample. The yield strength of the CA treated sample falls by 14%, the tensile strength falls by 6.2%, and the elongation falls by 21%. Nevertheless, the mechanical properties of PCA sample are improved obviously, close to the AA treated sample. Moreover, the generation and control mechanisms of the precipitation orientation effect in 2124 aluminum alloy were studied. It is deduced that the key mechanism lies in the effect of dislocation.
基金Project(51271080) supported by the National Natural Science Foundation of China
文摘The failure caused by the corrosion-wear of molten aluminum and its alloys is one of the main problems in aluminum industry. In this work, the resistance behavior of various materials, including Fe-based alloys, ceramics and corresponding high apparatus of corrosion-wear in molten aluminum and its alloys, were reviewed. The synergistic effect of corrosion and wear was discussed based on corrosion and wear mechanics. The effects of dynamic agitation due to rotating of friction pairs, physical property of liquid metal and size of grain etc., on the corrosion-wear resistance performance were investigated. In addition, the characteristics of corrosion-wear resistance performance of materials in molten aluminum and its alloy were summarized. According to our recent progress referred to kinds of materials, especially a TiA13/Ti3A1C2/A1203 composite, the ceramics/metal composites with a co-continuous structure will be of great advantage in the field of corrosion-wear environment of molten aluminum and its alloys.
基金Project (J09LD11) supported by Higher Educational Science and Technology Program of Shandong Province, ChinaProject (BS2009ZZ010) supported by Shandong Province Outstanding Research Award Fund for Young Scientists, China
文摘In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. The results show that the size distributions of β phases obey the logarithmic normal distribution. The Brinell hardness tests were also carried out. The tested hardness results show that the hardness distribution of the casting cooled in water is evener than that cooled in air, and its averaged value is higher than that cooled in air.
基金Projects(51371039,51871031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘In this paper,the effect of cathodic polarization on corrosion behavior of AA7003 under three kinds of aging treatments(including peak aging(PA),double peak aging(DPA)and regression re-aging(RRA))was studied in 3.5 wt%sodium chloride solution through slow strain rate testing(SSRT)and electrochemical testing.X-ray diffraction(XRD)and scanning electron microscopy(SEM)methods were also applied to investigating corrosion behavior and fracture morphology.The results showed that under open circuit,stress corrosion cracking(SCC)of AA7003 might by classified as anodic dissolution.In this case,the extent of SCC susceptibility(ISCC)of AA7003 alloy with different aging treatments was as follows:ISCC(PA)>ISCC(DPA)>ISCC(RRA).On the other hand,stress corrosion cracking(SCC)of AA7003 under cathodic polarization might be classified as hydrogen embrittlement(HE)which had been proved in this paper by presence of AlH3 diffraction peak in XRD patterns.In this case,for AA7003 with any of the three aging treatments,hydrogen embrittlement susceptibility(IHE)increases with negatively shifting of cathodic polarization.
基金Projects(52001249,51761135031,51790482,51722104)supported by the National Natural Science Foundation of ChinaProject(2017YFB0702301)supported by the National Key Research and Development Program of ChinaProject(2019M653595)supported by the China Postdoctoral Science Foundation。
文摘The plastic deformation showing instability has been a subject receiving considerable attention for centuries due to its importance in many industrial processes.For Al alloys,the major instability is the Portevin-Le Chatelier(PLC)effect that appears within a certain region of strain,strain rate and temperature.It manifests itself on the stress−strain curve as serrations associating with the rapid accumulation of plastic deformation within inclined slip bands.The PLC effect has severe practical consequences,which damages the surface quality after the sheet metal forming process and threatens the tensile ductility.Therefore,it is crucial to investigate the fundamental mechanisms underlying the PLC effect and in particular to investigate how it can be tempered by tailoring the material microstructure.In this paper,we review the common interpretations of the PLC effect and summarize the experimental results of the effects of the precipitation and the grain refinement,two conventional strengthening methodologies in Al alloys,on the serrated plastic flow.The effectiveness of solute atom clusters in suppressing the PLC effect is emphasized.
基金Project(2009AA03Z525)supported by the National High-tech Research and Development Program of ChinaProject(NCET-08-0080)supported by the Program of New Century Excellent Talents of the Ministry of Education of ChinaProject(20082172)supported by the Natural Science Foundation of Liaoning Province,China
文摘Effects of electromagnetic stirring on the microstructure and mechanical properties of the magnesium-lithium-aluminum alloy were studied.The results reveal that,the morphology of theαphase changes from the long block to globular structure andβ phase distributes more widely in the periphery ofαphase when the electromagnetic stirring voltage is higher than 110 V.The mechanical properties are increased significantly with the increasing electromagnetic stirring.The tensile strength is improved from 172 to 195 MPa,and the elongation is increased from 10.65%to 25.75%.
基金Project(2017YFB0306300)supported by the National Key Research and Development Program of ChinaProject(2014CB046602)supported by the National Basic Research Program of China+1 种基金Project(20120162110003)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(51235010)supported by the National Natural Science Foundation of China
文摘Stress relaxation ageing behavior of pre-deformed AA2219 is studied through stress relaxation age experiments and finite element(FE) simulation. The results show that the stress can promote the process of ageing precipitation, and shorten the time to reach the peak strength. Meanwhile,the residual stress and yield strength increase along with the increase in the initial stress. Based on microstructure evolution and ageing strengthening theory,a unified constitutive model is established and incorporated into the FE simulation model through a user subroutine. It is found that the relative error of the radius is 3.6% compared with the experimental result and the springback is 16.8%. This indicates that the proposed stress relaxation ageing constitutive model provides a good prediction on the springback of such stiffened panel during its ageing process.