Based on the cellular automaton (CA) method, a numerical model was developed to simulate the dendritic growth of magnesium alloy with HCP crystal structure. The growth kinetics was calculated from the complete solut...Based on the cellular automaton (CA) method, a numerical model was developed to simulate the dendritic growth of magnesium alloy with HCP crystal structure. The growth kinetics was calculated from the complete solution of the transport equations. By defining a special neighborhood configuration with the square CA cell, and using a set of capturing rules which were proposed by BELTRAN-SANCHEZ and STEFANESCU for the dendritic growth of cubic crystal metals during solidification, modeling of dendritic growth of magnesium alloy with different growth orientations was achieved. Simulation of equiaxed dendritic growth and columnar dendritic growth under directional solidification was carried out, and validation was performed by comparing the simulated results with the experimental results and those in the previously published works.展开更多
Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally...Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.展开更多
[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(C...[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.展开更多
The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in...The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.展开更多
The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeute...The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.展开更多
The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing ...The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.展开更多
Bridgman-type directional solidification experiments were conducted for Ti-46Al-8Nb (mole fraction, %) alloy. The effects of the growth rate and the diameter on the microstructure, phase transition and hardness of t...Bridgman-type directional solidification experiments were conducted for Ti-46Al-8Nb (mole fraction, %) alloy. The effects of the growth rate and the diameter on the microstructure, phase transition and hardness of the alloy were investigated. The results show that with the increase of the growth rate and the decrease of the diameter, the fullyβphase solidification changes to the peritectic solidification, and the final microstructure is composed of theα2/γlamellar structure and a multiphase microstructure (B2 phase,α2/γlamellar structure) respectively, which can be attributed to the solute enrichment resulting from the decreasing diffusion and convection ability. The occurrence of peritectic reaction at high growth rate promotes the solute segregation heavily and the coarse lamellar spacing in Al-and Nb-rich region, which greatly decreases the hardness values and leads to the discontinuity of the hardness curves with the increase of the growth rate. Comparatively, the Ti-46Al-8Nb alloy has lower hardness values than the other applied TiAl-based alloys in previous studies.展开更多
Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for diffe...Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.展开更多
The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouri...The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.展开更多
A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was st...A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.展开更多
Effects of light intensity on growth, development and formation on Fagopy- rum cymosum were explored with natural light intensities at 100%(A), 85.2%(B), 75.8%(C) and 59.7%(D). The results showed that the decl...Effects of light intensity on growth, development and formation on Fagopy- rum cymosum were explored with natural light intensities at 100%(A), 85.2%(B), 75.8%(C) and 59.7%(D). The results showed that the decline of light intensity re- duced nutrient growth period, so that plant growth stage entered in advance and extended, which indicated that the decline of light intensity would lower leaf number and area, the number of twigs from the stem, as well as photosynthate. Further- more, the reduction degree increased upon light intensity decrease degree, and the proper shading improved stem height and leaf area enhanced before growth term.展开更多
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr...Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.展开更多
The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spe...The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.展开更多
Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility wit...Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility with liquid metal cooling (LMC) technique. The effect of growth rate (v) on the solidified microstructures such as rod spacing (λ), rod size (d) and rod volume fraction was experimentally investigated. Two types of the solidified interfaces, planar and cellular, were identified. On the condition of both planar and cellular eutectic microstructures, the relationships between λ, d and v were given as: λv1/2=5.90 μm·μm1/2·s1/2 and dv1/2=2.18μm·μm1/2·s1/2, respectively. It was observed that the volume fraction of Mo phase could be adjusted in a certain range. The variation of phase volume fraction was attributed to undercooling increase and the growth characteristics of the individual constituent phases during the eutectic growth.展开更多
Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al...Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.展开更多
基金Projects (2010DFA72760, 2011BAE22B02, 2011ZX04014-052, 2011ZX04001-071) supported by the Ministry of Science and Technology of China
文摘Based on the cellular automaton (CA) method, a numerical model was developed to simulate the dendritic growth of magnesium alloy with HCP crystal structure. The growth kinetics was calculated from the complete solution of the transport equations. By defining a special neighborhood configuration with the square CA cell, and using a set of capturing rules which were proposed by BELTRAN-SANCHEZ and STEFANESCU for the dendritic growth of cubic crystal metals during solidification, modeling of dendritic growth of magnesium alloy with different growth orientations was achieved. Simulation of equiaxed dendritic growth and columnar dendritic growth under directional solidification was carried out, and validation was performed by comparing the simulated results with the experimental results and those in the previously published works.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Science & Technology Special Foundation of China
文摘Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.
基金Supported by High Yield and High Efficiency Technology Project of National Food Production(2006BAD02A04)National Agricultural Technology Support Program(2007BAD87B08)+2 种基金Doctoral Starting Fund of Jiangxi Academy of Agricultural Sciences(2009Dr.-1)Subject Leader Plan of Jiangxi ProvincePostdoctoral Starting Fund of Chinese Academy of Agricultural Sciences~~
文摘[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.
基金Projects(5140521651165032)supported by the National Natural Science Foundation of China+3 种基金Project(20151BAB216018)supported by the Natural Science Foundation of Jiangxi ProvinceChinaProject(GJJ14200)supported by the Education Commission Foundation of Jiangxi ProvinceChina
文摘The microstructure and mechanical properties of near-eutectic Al-12 Si alloys modified with 0-0.4% Nd(mass fraction) were investigated. The results indicate that a submicro- or nano-sized Al2 Nd phase is observed in the modified alloy with 0.3% Nd. The morphology of the α(Al) phase is significantly refined in the Nd-modified alloys. The primary Si morphology simultaneously changes into a fine, particle-like morphology, and the morphology of eutectic Si becomes fine-fibrous instead of coarse-acicular. Relatively few growth twins are observed on the surface of the Si plate in the Al-12Si-0.3Nd alloy at the optimal modification level. The mechanical property test results confirm that the mechanical properties of the as-cast Al-12 Si alloys are enhanced after the Nd addition, with optimal ultimate tensile strength(UTS) of 252 MPa and elongation(EL) of 13% at an Nd content of 0.3%. The improved mechanical properties are attributed to the refined morphology of Si phase and the formation of the Al2 Nd phase.
基金Project (U1134101) supported by the Mutual Foundation of Basic Research of High Speed Railway,ChinaProjects (ZR2009FL003,ZR2010EL011,ZR2011EMM003) supported by the Natural Science Foundation of Shandong Province,China
文摘The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.
基金Project(XKY2009035) supported by the Key Laboratory for Ecological-Environment Materials of Jiangsu Province,ChinaProject(11KJD430006) supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(AE201034) supported by the Research Finds of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,China
文摘The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation.
基金Projects(51071062,51274077,51271068)supported by the National Natural Science Foundation of ChinaProject(2011-P03)supported by Open Fund of State Key Laboratory of Mold and Die Technology of Huazhong University of Science and Technology+1 种基金Project(HIT.NSRIF.2013002)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011CB605504)supported by the National Basic Research Program of China
文摘Bridgman-type directional solidification experiments were conducted for Ti-46Al-8Nb (mole fraction, %) alloy. The effects of the growth rate and the diameter on the microstructure, phase transition and hardness of the alloy were investigated. The results show that with the increase of the growth rate and the decrease of the diameter, the fullyβphase solidification changes to the peritectic solidification, and the final microstructure is composed of theα2/γlamellar structure and a multiphase microstructure (B2 phase,α2/γlamellar structure) respectively, which can be attributed to the solute enrichment resulting from the decreasing diffusion and convection ability. The occurrence of peritectic reaction at high growth rate promotes the solute segregation heavily and the coarse lamellar spacing in Al-and Nb-rich region, which greatly decreases the hardness values and leads to the discontinuity of the hardness curves with the increase of the growth rate. Comparatively, the Ti-46Al-8Nb alloy has lower hardness values than the other applied TiAl-based alloys in previous studies.
基金Projects (50801019, 51071062, 50771041) supported by the National Natural Science Foundation of ChinaProject (2011CB605504) supported by the National Basic Research Program of China
文摘Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.
基金Project(51061010)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject(J201103)supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructures and crystal growth directions of permanent mould casting(PMC) and directionally solidified(DS) Al-Cu alloys with different contents of Cu were investigated. Simultaneously, the effects of pouring temperature on the microstructure and crystal growth direction of permanent mould casting pure Al were also discussed. The results indicate that the α(Al) crystals in the pure Al do not always keep common columnar grains, but change from the columnar grains to columnar dendrites with developed arms as the pouring temperature rises. The growth direction also varies with the change of pouring temperature. Cu element has similar effects on the microstructures of the PMC and DS casting Al-Cu alloys and the α(Al) crystals gradually change from columnar crystals in turn to columnar dendrites and developed equiaxed dendrites as the Cu content increases. The crystal growth direction in the PMC alloys gradually approaches (110) orientation with increasing Cu content. But the resulting crystals with growth direction of (110) do not belong to feathery grains. There are also no feathery grains to form in all of the DS Al-Cu alloys.
文摘A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature.
基金Special Funds for Fundamental Work of Ministry of Science and Technology(2006BAD13B02-13)~~
文摘Effects of light intensity on growth, development and formation on Fagopy- rum cymosum were explored with natural light intensities at 100%(A), 85.2%(B), 75.8%(C) and 59.7%(D). The results showed that the decline of light intensity re- duced nutrient growth period, so that plant growth stage entered in advance and extended, which indicated that the decline of light intensity would lower leaf number and area, the number of twigs from the stem, as well as photosynthate. Further- more, the reduction degree increased upon light intensity decrease degree, and the proper shading improved stem height and leaf area enhanced before growth term.
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of China Project (CHD2010JC115) supported by the Special Fund for Basic Scientific Research of Central Colleges,China
文摘Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.
基金Project (51071135) supported by the National Natural Science Foundation of ChinaProject (20114301110005) supported by the Ph. D.Programs Foundation of Ministry of Education of ChinaProject (10XZX15) supported by the Science Foundation of Xiangtan University,China
文摘The effect of Si on the growth kinetics of intermetallic compounds during the reaction of solid iron and molten aluminum was investigated with a scanning electron microscope coupled with an energy dispersive X-ray spectroscope, and hot-dip aluminized experiments. The results show that the intermetallic layer is composed of major Fe2Al5 and minor FeAl3. The Al-Fe-Si ternary phase, rl/rg, is formed in the Fe2Al5 layer. The tongue-like morphology of the Fe2Als layer becomes less distinct and disappears finally as the content of Si in aluminum bath increases. Si in the bath improves the prohibiting ability to the growth of Fe2Als and FeAl3. When the contents of Si are 0, 0.5%, 1.0%, 1.5%, 2.0% and 3.0%, the activation energies of Fe2Al5 are evaluated to be 207, 186, 169, 168, 167 and 172 kJ/mol, respectively. The reduction of the activation energy might result from the lattice distortion caused by Si atom penetrating into the Fe2Al5 phase. When Si atom occupies the vacancy site, it blocks easy diffusion path and results in the disappearance of tongue-like morphology.
基金Project (51074128) supported by the National Natural Science Foundation of ChinaProject (2007ZF53067) supported by the Aeronautical Science Foundation of China+1 种基金Project (2010JM6002) supported by the Natural Science Foundation of Shaanxi Province of ChinaProjec t(2012NCL004) supported by the Innovation Foundation of Inner Mongolia University of Science and Technology
文摘Ni-45.5Al-9Mo (mole fraction,%) alloy was directionally solidified with a constant temperature gradient (GL=334 K/cm) and growth rates ranging from 2 to 300 μm/s using a Bridgman type crystal growing facility with liquid metal cooling (LMC) technique. The effect of growth rate (v) on the solidified microstructures such as rod spacing (λ), rod size (d) and rod volume fraction was experimentally investigated. Two types of the solidified interfaces, planar and cellular, were identified. On the condition of both planar and cellular eutectic microstructures, the relationships between λ, d and v were given as: λv1/2=5.90 μm·μm1/2·s1/2 and dv1/2=2.18μm·μm1/2·s1/2, respectively. It was observed that the volume fraction of Mo phase could be adjusted in a certain range. The variation of phase volume fraction was attributed to undercooling increase and the growth characteristics of the individual constituent phases during the eutectic growth.
基金Projects(51174168,51274167)supported by the National Natural Science Foundation of ChinaProject(2013M532082)supported by Postdoctoral Science Foundation of ChinaProjects(13R21421700,13R21421800)supported by the Postdoctoral Science Foundation of Shanghai,China
文摘Based on the microscopic phase-field model, the correlation between site occupation evolution of alloying elements in Ni3V-DO22 phase and growth of Ni3Al-L12 phase was studied during the phase transformation of Ni75Al4.2V20.8. The results demonstrate that the growth of L12 phase can be divided into two stages: at the early stage, the composition of alloying elements in DO22 phase almost remains unchanged; at the late stage, the compositions of Ni and Al decrease while V increases in DO22 phase. Part of alloying elements for L12 phase growth are supplied from the site occupation evolution of alloying elements on three kinds of sublattices in DO22 phase. Ni is mainly supplied from V sublattice, and part of Al is supplied from NiⅠ and V sites at the centre of DO22 phase. The excessive V from the decreasing DO22 phase migrates into the centre of DO22 phase and mainly occupies V and NiII sites. It is the site occupation evolution of antisite atoms and ternary additions in DO22 phase that controls the growth rate of L12 phase at the late stage.