利用电化学方法在石墨烯表面上沉积金-钯纳米粒子,制备了金-钯纳米粒子/石墨烯修饰玻碳电极.扫描电子显微镜和X-射线能谱仪对修饰电极组装过程进行了表征.采用循环伏安法研究了对乙酰氨基酚在修饰电极上的电化学行为,在p H 7.0的磷酸盐...利用电化学方法在石墨烯表面上沉积金-钯纳米粒子,制备了金-钯纳米粒子/石墨烯修饰玻碳电极.扫描电子显微镜和X-射线能谱仪对修饰电极组装过程进行了表征.采用循环伏安法研究了对乙酰氨基酚在修饰电极上的电化学行为,在p H 7.0的磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上出现一对明显的氧化还原峰,其氧化还原峰电位分别为0.334V和0.299V.在最佳条件下,对乙酰氨基酚的氧化峰电流与其浓度在5.0×10-7-1.0×10-4mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-7mol/L.利用该方法对药片中的对乙酰氨基酚含量进行检测,获得的结果令人满意.展开更多
Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition o...Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.展开更多
This paper examined the potential of using laboratory-synthesized nanoscale Pd/Fe bimetallic particles to dechlorinate chlorinated methanes, including dichloromethane (DCM), trichloromethane (CF) and tetrachloromethan...This paper examined the potential of using laboratory-synthesized nanoscale Pd/Fe bimetallic particles to dechlorinate chlorinated methanes, including dichloromethane (DCM), trichloromethane (CF) and tetrachloromethane (CT). Nanoscale Pd/Fe bimetallic particles were characterized in terms of surface area, morphology, size and structure. The parameters affecting the dechlorination efficiency were studied through batch experiments. Effects of Pd content, Pd/Fe addition, and the initial pH value of reaction system on the dechlorination efficiency of chlorinated methanes were determined systematically. Results show that nanoscale Pd/Fe bimetallic particles play a prominent role in the dechlorination of chlorinated methanes. The change of pH value and ferrous ion concentration during dechlorination reaction were also investigated in this study. It is found that the dechlorination efficiency of chlorinated methanes is in the order of CT>CF>DCM.展开更多
A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2...A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2 (acac = acetyl- acetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures.展开更多
文摘利用电化学方法在石墨烯表面上沉积金-钯纳米粒子,制备了金-钯纳米粒子/石墨烯修饰玻碳电极.扫描电子显微镜和X-射线能谱仪对修饰电极组装过程进行了表征.采用循环伏安法研究了对乙酰氨基酚在修饰电极上的电化学行为,在p H 7.0的磷酸盐缓冲溶液中,对乙酰氨基酚在修饰电极上出现一对明显的氧化还原峰,其氧化还原峰电位分别为0.334V和0.299V.在最佳条件下,对乙酰氨基酚的氧化峰电流与其浓度在5.0×10-7-1.0×10-4mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-7mol/L.利用该方法对药片中的对乙酰氨基酚含量进行检测,获得的结果令人满意.
基金supported by the National Natural Science Foundation of China(21322606 and 21436005)the Specialized Research Fund for the Doctoral Program of Higher Education(20120172110012)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Guangdong Province(S2011020002397 and 2013B090500027)~~
文摘Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50978066)State Key Laboratory of Urban Water Resources and Environment (Grant No.2008DX06)
文摘This paper examined the potential of using laboratory-synthesized nanoscale Pd/Fe bimetallic particles to dechlorinate chlorinated methanes, including dichloromethane (DCM), trichloromethane (CF) and tetrachloromethane (CT). Nanoscale Pd/Fe bimetallic particles were characterized in terms of surface area, morphology, size and structure. The parameters affecting the dechlorination efficiency were studied through batch experiments. Effects of Pd content, Pd/Fe addition, and the initial pH value of reaction system on the dechlorination efficiency of chlorinated methanes were determined systematically. Results show that nanoscale Pd/Fe bimetallic particles play a prominent role in the dechlorination of chlorinated methanes. The change of pH value and ferrous ion concentration during dechlorination reaction were also investigated in this study. It is found that the dechlorination efficiency of chlorinated methanes is in the order of CT>CF>DCM.
文摘A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2 (acac = acetyl- acetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures.