Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, an...Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, and uses the shape variation information between successive frames to represent gait signature. Different from other features, IVV rather than condenses a gait sequence into single image resulting in spatial sequence lost; it records the whole moving process in an IVV sequence. IVV can encode whole essential features of gait and preserve all the movements of limbs. Experimental results show that the proposed gait representation has a promising recognition performance.展开更多
A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and n...A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60602038)广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.06300862)
基金National Natural Science Foundation of China ( No.60873179)Shenzhen Technology Fundamental Research Project, China ( No.JC200903180630A)Doctoral Program Foundation of Institutions of Higher Education of China ( No.20090121110032)
文摘Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, and uses the shape variation information between successive frames to represent gait signature. Different from other features, IVV rather than condenses a gait sequence into single image resulting in spatial sequence lost; it records the whole moving process in an IVV sequence. IVV can encode whole essential features of gait and preserve all the movements of limbs. Experimental results show that the proposed gait representation has a promising recognition performance.
基金supported by the National Natural Science Foundation of China(No.61272297)
文摘A local discriminant regularized soft k-means (LDRSKM) method with Bayesian inference is proposed for multimode process monitoring. LDRSKM extends the regularized soft k-means algorithm by exploiting the local and non-local geometric information of the data and generalized linear discriminant analysis to provide a better and more meaningful data partition. LDRSKM can perform clustering and subspace selection simultaneously, enhancing the separability of data residing in different clusters. With the data partition obtained, kernel support vector data description (KSVDD) is used to establish the monitoring statistics and control limits. Two Bayesian inference based global fault detection indicators are then developed using the local monitoring results associated with principal and residual subspaces. Based on clustering analysis, Bayesian inference and manifold learning methods, the within and cross-mode correlations, and local geometric information can be exploited to enhance monitoring performances for nonlinear and non-Gaussian processes. The effectiveness and efficiency of the proposed method are evaluated using the Tennessee Eastman benchmark process.