Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualit...Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualitative simulation,an automatic method for adverse consequence identification for potential maloperation is proposed.The qualitative model for production process is expressed by a novel directed graph.Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords.The proposed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations.The method is illustrated with a simple batch process and a batch reaction process.The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations.After analysis for possible plant maloperations,some measures can be taken to avoid maloperations or reduce losses resulted from maloperations.展开更多
An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the c...An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the component-related ratio index and a mixing matrix, both of which are obtained in data preprocessing by spectral independent component analysis. The complex causality among oscillatory process variables is then revealed by Granger causality test and is visualized in the form of causality diagram. The simplification of causal connectivity in the diagram is performed according to the understanding of process knowledge and the final simplest causality diagram, which represents the main oscillation propagation paths, is achieved by the automated cutting-off thresh-old search, with which less significant causality pathways are filtered out. The source of the oscillation disturbance can be identified intuitively through the final causality diagram. Both simulated and real plant data tests are presented to demonstrate the effectiveness and feasibility of the proposed method.展开更多
In recent years, the popular multifractal detrended fluctuation analysis (MF-DFA) is extended to two-dimensional (2D) version, which has been applied in some field of image processing. In this paper, based on the ...In recent years, the popular multifractal detrended fluctuation analysis (MF-DFA) is extended to two-dimensional (2D) version, which has been applied in some field of image processing. In this paper, based on the 2D MF-DFA, a novel multifractal estimation method for images, which we called the local multifractal detrended fluctuation analysis (LMF-DFA), is proposed to recognize and distinguish 20 types of tea breeds. A set of new multifractal descriptors, namely the local multifractal fluctuation exponents is defined to portray the local scaling properties of a surface. After collecting 10 tea leaves for each breed and photographing them to standard images, the LMF-DFA method is used to extract characteristic parameters for the images. Our analysis finds that there are significant differences among the different tea breeds' characteristic parameters by analysis of variance. Both the proposed LMF-DFA exponents and another classic parameter, namely the exponent based on capacity measure method have been used as features to distinguish the 20 tea breeds. The comparison results illustrate that the LMF-DFA estimation can differentiate the tea breeds more effectively and provide more satisfactory accuracy.展开更多
文摘Batch processes are important in chemical industry,in which operators usually play a major role and hazards may arise by their inadvertent acts.In this paper,based on hazard and operability study and concept of qualitative simulation,an automatic method for adverse consequence identification for potential maloperation is proposed.The qualitative model for production process is expressed by a novel directed graph.Possible operation deviations from normal operating procedure are identified systematically by using a group of guidewords.The proposed algorithm is used for qualitative simulation of batch processes to identify the effects of maloperations.The method is illustrated with a simple batch process and a batch reaction process.The results show that batch processes can be simulated qualitatively and hazards can be identified for operating procedures including maloperations.After analysis for possible plant maloperations,some measures can be taken to avoid maloperations or reduce losses resulted from maloperations.
基金Supported by the National Natural Science Foundation of China (60974061).
文摘An integrated method for identifying the propagation of multi-loop process oscillations and their source location is proposed in this paper. Oscillatory process loop variables are automatically selected based on the component-related ratio index and a mixing matrix, both of which are obtained in data preprocessing by spectral independent component analysis. The complex causality among oscillatory process variables is then revealed by Granger causality test and is visualized in the form of causality diagram. The simplification of causal connectivity in the diagram is performed according to the understanding of process knowledge and the final simplest causality diagram, which represents the main oscillation propagation paths, is achieved by the automated cutting-off thresh-old search, with which less significant causality pathways are filtered out. The source of the oscillation disturbance can be identified intuitively through the final causality diagram. Both simulated and real plant data tests are presented to demonstrate the effectiveness and feasibility of the proposed method.
文摘In recent years, the popular multifractal detrended fluctuation analysis (MF-DFA) is extended to two-dimensional (2D) version, which has been applied in some field of image processing. In this paper, based on the 2D MF-DFA, a novel multifractal estimation method for images, which we called the local multifractal detrended fluctuation analysis (LMF-DFA), is proposed to recognize and distinguish 20 types of tea breeds. A set of new multifractal descriptors, namely the local multifractal fluctuation exponents is defined to portray the local scaling properties of a surface. After collecting 10 tea leaves for each breed and photographing them to standard images, the LMF-DFA method is used to extract characteristic parameters for the images. Our analysis finds that there are significant differences among the different tea breeds' characteristic parameters by analysis of variance. Both the proposed LMF-DFA exponents and another classic parameter, namely the exponent based on capacity measure method have been used as features to distinguish the 20 tea breeds. The comparison results illustrate that the LMF-DFA estimation can differentiate the tea breeds more effectively and provide more satisfactory accuracy.