The modification of A356 aluminum-silicon alloy using yttrium oxide (Y2O3) was studied. Addition levels of up to 2.5 wt.% Y2O3 were investigated. A premixed powder of Al-30wt.%Y2O3 was added to the melt at about 750℃...The modification of A356 aluminum-silicon alloy using yttrium oxide (Y2O3) was studied. Addition levels of up to 2.5 wt.% Y2O3 were investigated. A premixed powder of Al-30wt.%Y2O3 was added to the melt at about 750℃ using vortex method. Samples were then poured in sand mold. The results showed that evident modification was obtained using the Y2O3 addition. The optimum level was 1.5 wt.%, and was corresponding to a eutectic temperature depression from 568 to 557℃. The eutectic Si particles were refined in length from 44.8 to 8.3 μm, and modified in aspect ratio from 6.8 to 0.98. Higher additions of Y2O3 caused de-modification of the eutectic Si particles. The ductility of the modified specimens was enhanced by more than 20% compared to the unmodified ones. This was associated with a gradual transfer from cleavage to a more ductile mode of fracture.展开更多
基金financial support from the Central Metallurgical Research and Development Institute (CMRDI), Ministry of Scientific Research, Egypt
文摘The modification of A356 aluminum-silicon alloy using yttrium oxide (Y2O3) was studied. Addition levels of up to 2.5 wt.% Y2O3 were investigated. A premixed powder of Al-30wt.%Y2O3 was added to the melt at about 750℃ using vortex method. Samples were then poured in sand mold. The results showed that evident modification was obtained using the Y2O3 addition. The optimum level was 1.5 wt.%, and was corresponding to a eutectic temperature depression from 568 to 557℃. The eutectic Si particles were refined in length from 44.8 to 8.3 μm, and modified in aspect ratio from 6.8 to 0.98. Higher additions of Y2O3 caused de-modification of the eutectic Si particles. The ductility of the modified specimens was enhanced by more than 20% compared to the unmodified ones. This was associated with a gradual transfer from cleavage to a more ductile mode of fracture.