The quenching process of garnett wire teeth of metallic card clothing heated by flame was researched by use of 3-D finite element method and the equation of boundary condition was established by making use of a model ...The quenching process of garnett wire teeth of metallic card clothing heated by flame was researched by use of 3-D finite element method and the equation of boundary condition was established by making use of a model of artificial neural network. The transient temperature field, phase transformation in the heating process, the quenching microstructures and the hardness distribution on quenched garnett wire teeth of metallic card clothing were simulated. The result shows that the maximum error of the hardness between the simulative value and the actual measuring value is 8.0% on only one testing point and errors are all less than 3.0% on other testing points.展开更多
This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutane...This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.展开更多
Canopy foliar Nitrogen Concentration (CNC) is one of the most important parameters influencing vegetation productivity in forest ecosystems. In this study, we explored the potential of imaging spectrometry (hypersp...Canopy foliar Nitrogen Concentration (CNC) is one of the most important parameters influencing vegetation productivity in forest ecosystems. In this study, we explored the potential of imaging spectrometry (hyperspectral) remote sensing of CNC in conifer plantations in China’s subtropical red soil hilly region. Our analysis included data from 57 field plots scattered across two transects covered by Hyperion images. Single regression and partial least squares regression (PLSR) were used to explore the relationships between CNC and hyperspectral data. The correlations between CNC and nearinfrared relfectance (NIR) were consistent in three data subsets (subsets A-C). For all subsets, CNC was signiifcantly positively correlated with NIR in the two transects (R2=0.29, 0.33 and 0.36, P<0.05 or P<0.01, respectively). It suggested that the NIR-CNC relationship exist despite a weak one, and the relationship may be weakened by the single canopy structure. Besides, we also applied a shortwave infrared (SWIR) index - Normalized Difference Nitrogen Index (NDNI) to estimate CNC variation. NDNI presented a signiifcant positive correlation with CNC in different subsets, but like NIR, it was also with low coefifcient of determination (R2=0.38, 0.20 and 0.17, P<0.01, respectively). Also, the correlations between CNC and the entire spectrum reflectance (or its derivative and logarithmic transformation) by PLSR owned different signiifcance in various subsets. We did not ifnd the very robust relationship like previous literatures, so the data we used were checked again. The paired T-test was applied to estimate the inlfuence of inter-annual variability of FNC on the relationships between CNC and Hyperion data. The inter-annual mismatch between period of ifeldwork and Hyperion acquisition had no inlfuence on the correlations of CNC-Hyperion data. Meanwhile, we pointed out that the lack of the canopy structure variation in conifer plantation area may lead to these weak relationships.展开更多
文摘The quenching process of garnett wire teeth of metallic card clothing heated by flame was researched by use of 3-D finite element method and the equation of boundary condition was established by making use of a model of artificial neural network. The transient temperature field, phase transformation in the heating process, the quenching microstructures and the hardness distribution on quenched garnett wire teeth of metallic card clothing were simulated. The result shows that the maximum error of the hardness between the simulative value and the actual measuring value is 8.0% on only one testing point and errors are all less than 3.0% on other testing points.
文摘This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.
基金the National Basic Research Program of China on Global Change(Grant No.2010CB950701,2010CB833503)the Chinese Academy of Sciences for Strategic Priority Research Program(Grant No.XDA05050602-1)National Natural Science Foundation of China(Grant No.31070438)
文摘Canopy foliar Nitrogen Concentration (CNC) is one of the most important parameters influencing vegetation productivity in forest ecosystems. In this study, we explored the potential of imaging spectrometry (hyperspectral) remote sensing of CNC in conifer plantations in China’s subtropical red soil hilly region. Our analysis included data from 57 field plots scattered across two transects covered by Hyperion images. Single regression and partial least squares regression (PLSR) were used to explore the relationships between CNC and hyperspectral data. The correlations between CNC and nearinfrared relfectance (NIR) were consistent in three data subsets (subsets A-C). For all subsets, CNC was signiifcantly positively correlated with NIR in the two transects (R2=0.29, 0.33 and 0.36, P<0.05 or P<0.01, respectively). It suggested that the NIR-CNC relationship exist despite a weak one, and the relationship may be weakened by the single canopy structure. Besides, we also applied a shortwave infrared (SWIR) index - Normalized Difference Nitrogen Index (NDNI) to estimate CNC variation. NDNI presented a signiifcant positive correlation with CNC in different subsets, but like NIR, it was also with low coefifcient of determination (R2=0.38, 0.20 and 0.17, P<0.01, respectively). Also, the correlations between CNC and the entire spectrum reflectance (or its derivative and logarithmic transformation) by PLSR owned different signiifcance in various subsets. We did not ifnd the very robust relationship like previous literatures, so the data we used were checked again. The paired T-test was applied to estimate the inlfuence of inter-annual variability of FNC on the relationships between CNC and Hyperion data. The inter-annual mismatch between period of ifeldwork and Hyperion acquisition had no inlfuence on the correlations of CNC-Hyperion data. Meanwhile, we pointed out that the lack of the canopy structure variation in conifer plantation area may lead to these weak relationships.