为准确评价重复钉入次数对花旗松木材握钉力的影响,选用2.60、3.16、3.52和4.14 mm 4种直径的普通低碳镀锌光圆钉和进口花旗松气干材为研究对象,开展了花旗松气干材对光圆钉的重复握钉力变化规律研究。结果表明:花旗松气干材对光圆钉的...为准确评价重复钉入次数对花旗松木材握钉力的影响,选用2.60、3.16、3.52和4.14 mm 4种直径的普通低碳镀锌光圆钉和进口花旗松气干材为研究对象,开展了花旗松气干材对光圆钉的重复握钉力变化规律研究。结果表明:花旗松气干材对光圆钉的握钉力与钉直径呈正相关;花旗松气干材对不同直径光圆钉重复握钉力的衰减规律相似;建立的花旗松气干材重复握钉力计算公式能够较好地拟合其重复握钉力。结果可为震后或重复拆装后木材的钉连接剩余强度提供参考。展开更多
Objective To evaluate the role of open reduction through anterior-medial malleolar approachwith cannulated screw internal fixation in the treatment of displaced talus fractures. Methods 16 cases of Hawkin type Ⅱ - Ⅲ...Objective To evaluate the role of open reduction through anterior-medial malleolar approachwith cannulated screw internal fixation in the treatment of displaced talus fractures. Methods 16 cases of Hawkin type Ⅱ - Ⅲ displaced talus fractures were treated by open reduction through single anterior medial malleolar approach with cannulated screw internal fixation. Results All the 16 cases of displaced talus fractures achieved bony heal in which 5 cases suffered talus aseptic necrosis. The whole excellence-good ratio reached 62. 5%. Conclusion Open reduction through anterior-medial malleolar approach with cannulated screw internal fixation is a less trauma, easy manipulation, effective method of treatment for displaced talus fractures.展开更多
Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruc...Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruction model for the desired lumbar vertebra was generated by using the Mimics 10.11 software, and the optimal screw size and orientation were determined using the reverse engineering software. Afterwards, a drill template was created by reverse engineering principle, whose surface was the antitemplate of the vertebral surface. The drill template and its corresponding vertebra were manufactured using the rapid prototyping technique. Results: The accuracy of the drill template was confinned by drilling screw trajectory into the vertebral biomodel preoperatively. This method also showed its ability to customize the placement and size of each screw based on the unique morphology of the lumbar vertebra.The drill template fits the postural surface of the vertebra very well in the cadaver experiment. Postoperative CT scans for controlling the pedicle bore showed that the personalized template had a high precision in cadaver experiment and clinical application. No misplacement occurred by using the personalized template. During surgery, no additional computer assistance was needed. Conclusions: The authors have developed a novel drill template for lumbar pedicle screw placement with good applicability and high accuracy. The potential use of drill templates to place lumbar pedicle screws is promising, Our methodology appears to provide an accurate technique and trajectory for pedicle screw placement in the lumbar spine.展开更多
文摘为准确评价重复钉入次数对花旗松木材握钉力的影响,选用2.60、3.16、3.52和4.14 mm 4种直径的普通低碳镀锌光圆钉和进口花旗松气干材为研究对象,开展了花旗松气干材对光圆钉的重复握钉力变化规律研究。结果表明:花旗松气干材对光圆钉的握钉力与钉直径呈正相关;花旗松气干材对不同直径光圆钉重复握钉力的衰减规律相似;建立的花旗松气干材重复握钉力计算公式能够较好地拟合其重复握钉力。结果可为震后或重复拆装后木材的钉连接剩余强度提供参考。
文摘Objective To evaluate the role of open reduction through anterior-medial malleolar approachwith cannulated screw internal fixation in the treatment of displaced talus fractures. Methods 16 cases of Hawkin type Ⅱ - Ⅲ displaced talus fractures were treated by open reduction through single anterior medial malleolar approach with cannulated screw internal fixation. Results All the 16 cases of displaced talus fractures achieved bony heal in which 5 cases suffered talus aseptic necrosis. The whole excellence-good ratio reached 62. 5%. Conclusion Open reduction through anterior-medial malleolar approach with cannulated screw internal fixation is a less trauma, easy manipulation, effective method of treatment for displaced talus fractures.
基金This project was supported by China Postdoctoral Science Foundation (20080431420) and Yunnan Natural Science Foundation (2008CD210).
文摘Objective: To develop a novel method of spinal pedical stereotaxy by reverse engineering and rapid prototyping techniques, and to validate its accuracy by experimental and clinical studies. Methods: A 3D reconstruction model for the desired lumbar vertebra was generated by using the Mimics 10.11 software, and the optimal screw size and orientation were determined using the reverse engineering software. Afterwards, a drill template was created by reverse engineering principle, whose surface was the antitemplate of the vertebral surface. The drill template and its corresponding vertebra were manufactured using the rapid prototyping technique. Results: The accuracy of the drill template was confinned by drilling screw trajectory into the vertebral biomodel preoperatively. This method also showed its ability to customize the placement and size of each screw based on the unique morphology of the lumbar vertebra.The drill template fits the postural surface of the vertebra very well in the cadaver experiment. Postoperative CT scans for controlling the pedicle bore showed that the personalized template had a high precision in cadaver experiment and clinical application. No misplacement occurred by using the personalized template. During surgery, no additional computer assistance was needed. Conclusions: The authors have developed a novel drill template for lumbar pedicle screw placement with good applicability and high accuracy. The potential use of drill templates to place lumbar pedicle screws is promising, Our methodology appears to provide an accurate technique and trajectory for pedicle screw placement in the lumbar spine.