Hydroalkoxycarbonylation of olefins has been considered to be one of the most attractive methods to synthesize esters. Controlling the regioselectivities of linear esters(L) and branched esters(B) is a challenging pro...Hydroalkoxycarbonylation of olefins has been considered to be one of the most attractive methods to synthesize esters. Controlling the regioselectivities of linear esters(L) and branched esters(B) is a challenging project for researchers working in this reaction. Although most of the attention has been paid to control the regioselectivity through ligand design in homogeneous catalytic systems, study in the area is still limited. Herein, Ru-clusters/CeO2 is employed as a heterogeneous catalyst for the hydromethoxycarbonylation of styrene without any additives. After optimization of the reaction conditions, the conversion of styrene is > 99% with 83% and 12% regioselectivity of linear and branched ester, respectively. By using different supports(CeO2(nanoparticle), CeO2-rod, and CeO2-cube), three catalysts including Ru-clusters/CeO2, Ru/CeO2-rod, and Ru/CeO2-cube are prepared and applied in the reaction. Structural characterizations demonstrate that the L/B ratio is related to the Ru size of supported Ru catalysts. Further Raman characterization and NH3-TPD demonstrate that the metal-support interaction and the concentration of oxygen vacancy of the catalyst have a great influence on the Ru size. The mechanism and kinetic analysis for this reaction are also investigated in this work.展开更多
文摘Hydroalkoxycarbonylation of olefins has been considered to be one of the most attractive methods to synthesize esters. Controlling the regioselectivities of linear esters(L) and branched esters(B) is a challenging project for researchers working in this reaction. Although most of the attention has been paid to control the regioselectivity through ligand design in homogeneous catalytic systems, study in the area is still limited. Herein, Ru-clusters/CeO2 is employed as a heterogeneous catalyst for the hydromethoxycarbonylation of styrene without any additives. After optimization of the reaction conditions, the conversion of styrene is > 99% with 83% and 12% regioselectivity of linear and branched ester, respectively. By using different supports(CeO2(nanoparticle), CeO2-rod, and CeO2-cube), three catalysts including Ru-clusters/CeO2, Ru/CeO2-rod, and Ru/CeO2-cube are prepared and applied in the reaction. Structural characterizations demonstrate that the L/B ratio is related to the Ru size of supported Ru catalysts. Further Raman characterization and NH3-TPD demonstrate that the metal-support interaction and the concentration of oxygen vacancy of the catalyst have a great influence on the Ru size. The mechanism and kinetic analysis for this reaction are also investigated in this work.