燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影...燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影响。在一般蒙特卡罗燃耗软件基础上耦合了调棒临界搜索功能,计算表明大部分临界搜索只需三次,验证了算法收敛的有效性。对TMSR-SF1未分组补偿棒方案进行了计算,结果表明:补偿棒位在氙平衡及寿期末时刻有较大提升幅度,其余时刻近似线性上升;补偿棒初期在总行程一半偏上位置,增加了堆芯轴向功率及中子通量分布的不均匀性,相对寿期末功率峰因子偏大17%,最大中子通量偏大12%。该变化未对总体设计参数造成显著影响,证明补偿棒未分组方案具有设计可行性。展开更多
中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本...中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本文基于较通用的蒙特卡罗多粒子输运(Monte Carlo N Particle Transport Code,MCNP)程序,植入了动态参数直接统计方法,用于计算TMSR-SF1中的有效缓发中子份额和有效中子代时间。通过多个ICSBEP(International Criticality Safety Benchmark Evaluation Project)基准题的检验,计算结果与基准题实验误差在±5%以内,证明了该方法的准确性。运用该方法计算得到TMSR-SF1中6组有效缓发中子份额和有效中子代时间随燃耗深度的变化,其计算结果与采用MCNP共轭通量方法所得的数据误差在±3%以内,证明该方法用于TMSR-SF1的动态参数分析是合理可靠的。展开更多
钍基熔盐堆(TMSR)核能系统项目是中科院未来10年先导研究专项之一,其研究目标是研发第四代裂变反应堆核能系统,计划至2020年之前建成2MW钍基熔盐实验堆,形成支撑未来TMSR核能系统发展的若干技术研发能力,并解决钍铀燃料循环和钍基熔盐...钍基熔盐堆(TMSR)核能系统项目是中科院未来10年先导研究专项之一,其研究目标是研发第四代裂变反应堆核能系统,计划至2020年之前建成2MW钍基熔盐实验堆,形成支撑未来TMSR核能系统发展的若干技术研发能力,并解决钍铀燃料循环和钍基熔盐堆相关重大技术挑战,研制出工业示范级钍基熔盐堆,实现钍资源的有效使用和核能的综合利用。钍基核燃料具有232Th/233U转换效率高、在热中子堆中也能增殖、产生较少的高毒性放射性核素、有利于防核扩散等优点,但也面临燃料制备困难、232U衰变子核的强γ辐射给乏燃料处理和燃料再加工带来的困难、钍铀转换反应链中间核233Pa会吸收堆内中子从而影响233U产量。核燃料利用的工作模式有开环模式、改进的开环模式和闭环模式。熔盐堆是第四代反应堆的6个候选堆型之一,非常适合用作钍铀燃料循环,熔盐堆加上干法在线分离技术有可能实现完全的钍铀燃料闭式循环。本世纪初提出的氟盐冷却高温堆(Fluoride salt-cooled High temperature Reactors,FHRs),用氟化熔盐作为冷却剂,采用TRISO燃料颗粒作为核燃料,其中球床型氟盐冷却高温堆可以在改进的开环模式实现钍铀燃料循环。熔盐堆良好的高温特性使其成为核能非电应用主要候选者之一,反应堆产生的高温热可直接用于页岩油开采和高温制氢等工业领域。展开更多
文摘燃耗补偿棒棒位是反应堆监测的一项重要参数,同时棒位移动会对堆芯物理参数分布造成影响。计算了固态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor with Solid Fuel, TMSR-SF1)的补偿棒位变化,并分析其对功率、通量及燃耗分布的影响。在一般蒙特卡罗燃耗软件基础上耦合了调棒临界搜索功能,计算表明大部分临界搜索只需三次,验证了算法收敛的有效性。对TMSR-SF1未分组补偿棒方案进行了计算,结果表明:补偿棒位在氙平衡及寿期末时刻有较大提升幅度,其余时刻近似线性上升;补偿棒初期在总行程一半偏上位置,增加了堆芯轴向功率及中子通量分布的不均匀性,相对寿期末功率峰因子偏大17%,最大中子通量偏大12%。该变化未对总体设计参数造成显著影响,证明补偿棒未分组方案具有设计可行性。
文摘中子动态参数的准确分析与反应堆的安全特性紧密相关。固态燃料钍基熔盐实验堆(Thorium-based Molten Salt experiment Reactor with Solid Fuel,TMSR-SF1)作为第四代新堆型,采用蒙特卡罗输运程序计算其动态参数更有利于核安全评审。本文基于较通用的蒙特卡罗多粒子输运(Monte Carlo N Particle Transport Code,MCNP)程序,植入了动态参数直接统计方法,用于计算TMSR-SF1中的有效缓发中子份额和有效中子代时间。通过多个ICSBEP(International Criticality Safety Benchmark Evaluation Project)基准题的检验,计算结果与基准题实验误差在±5%以内,证明了该方法的准确性。运用该方法计算得到TMSR-SF1中6组有效缓发中子份额和有效中子代时间随燃耗深度的变化,其计算结果与采用MCNP共轭通量方法所得的数据误差在±3%以内,证明该方法用于TMSR-SF1的动态参数分析是合理可靠的。
文摘钍基熔盐堆(TMSR)核能系统项目是中科院未来10年先导研究专项之一,其研究目标是研发第四代裂变反应堆核能系统,计划至2020年之前建成2MW钍基熔盐实验堆,形成支撑未来TMSR核能系统发展的若干技术研发能力,并解决钍铀燃料循环和钍基熔盐堆相关重大技术挑战,研制出工业示范级钍基熔盐堆,实现钍资源的有效使用和核能的综合利用。钍基核燃料具有232Th/233U转换效率高、在热中子堆中也能增殖、产生较少的高毒性放射性核素、有利于防核扩散等优点,但也面临燃料制备困难、232U衰变子核的强γ辐射给乏燃料处理和燃料再加工带来的困难、钍铀转换反应链中间核233Pa会吸收堆内中子从而影响233U产量。核燃料利用的工作模式有开环模式、改进的开环模式和闭环模式。熔盐堆是第四代反应堆的6个候选堆型之一,非常适合用作钍铀燃料循环,熔盐堆加上干法在线分离技术有可能实现完全的钍铀燃料闭式循环。本世纪初提出的氟盐冷却高温堆(Fluoride salt-cooled High temperature Reactors,FHRs),用氟化熔盐作为冷却剂,采用TRISO燃料颗粒作为核燃料,其中球床型氟盐冷却高温堆可以在改进的开环模式实现钍铀燃料循环。熔盐堆良好的高温特性使其成为核能非电应用主要候选者之一,反应堆产生的高温热可直接用于页岩油开采和高温制氢等工业领域。