Vanadium oxide/titanate composites nanorods (VOx / Titanate-CNRs) were synthesized in high yield by using titanate nanotubes as templates and V2O5·nH2O sol as the precursors under hydrothermal conditions (200 ℃,...Vanadium oxide/titanate composites nanorods (VOx / Titanate-CNRs) were synthesized in high yield by using titanate nanotubes as templates and V2O5·nH2O sol as the precursors under hydrothermal conditions (200 ℃, 48 h). Samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-ray (EDAX). X-ray diffraction structure determination showed that this new phase had the composition of V3O7·H2O and crystallized with orthorhombic symmetry. SEM and TEM tests showed that the samples were uniform straight rods with the diameter range from around 100 to 300 nm and the length over 10 μm. The chemical compositions of the samples were determined with EDXA. The electrochemical tests of samples (titanates nanotubes, V2O5 and VOx / Titanate-CNRs) prove that VOx / Titanate-CNRs exhibit a better electrochemical performance.展开更多
文摘Vanadium oxide/titanate composites nanorods (VOx / Titanate-CNRs) were synthesized in high yield by using titanate nanotubes as templates and V2O5·nH2O sol as the precursors under hydrothermal conditions (200 ℃, 48 h). Samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive analysis by X-ray (EDAX). X-ray diffraction structure determination showed that this new phase had the composition of V3O7·H2O and crystallized with orthorhombic symmetry. SEM and TEM tests showed that the samples were uniform straight rods with the diameter range from around 100 to 300 nm and the length over 10 μm. The chemical compositions of the samples were determined with EDXA. The electrochemical tests of samples (titanates nanotubes, V2O5 and VOx / Titanate-CNRs) prove that VOx / Titanate-CNRs exhibit a better electrochemical performance.