Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced elect...Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.展开更多
基金Project(NCET-10-0946)supported by Program for New Century Excellent Talents in University of ChinaProject(2017JY0038)supported by Science and Technology Key Project of Sichuan Province,ChinaProject(2013TX8)supported by Titanium and Titanium Alloy Innovation Team of Panzhihua City,China
文摘Anodic oxidation with different electrolyte was employed to improve the electrochemical properties of carbon paper as negative electrode for vanadium redox battery(VRB).The treated carbon paper exhibits enhanced electrochemical activity for V^2+/V^3+redox reaction.The sample(CP-NH3)treated in NH3 solution demonstrates superior performance in comparison with the sample(CP-NaOH)treated in NaOH solution.X-ray photoelectron spectroscopy results show that oxygen-and nitrogen-containing functional groups have been introduced on CP-NH3 surface by the treatment,and Raman spectra confirm the increased surface defect of CP-NH3.Energy storage performance of cell was evaluated by charge/discharge measurement by using CP-NH3.Usage of CP-NH3 can greatly improve the cell performance with energy efficiency increase of 4.8%at 60 mA/cm^2.The excellent performance of CP-NH3 mainly results from introduction of functional groups as active sites and improved wetting properties.This work reveals that anodic oxidation is a clean,simple,and efficient method for boosting the performance of carbon paper as negative electrode for VRB.