The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The ef...The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.展开更多
The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing wit...The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing with HRB335 steel bars, i.e. coordination of strength and ductility, strain-aging sensibility, low temperature impact toughness, weld ability and high strain low cycle fatigue. The ductile-brittle transit temperatures of hot-rolled and strain-aged steel bars were evaluated as –17 °C and ?8 °C respectively, and the low temperature impact toughness of HRB400 steel bars remains to be improved. Transmission electron microscopy (TEM) and electron diffraction showed little vanadium existed in ferrite as VN, most of which existed in pearlite as alloy cementite which resulted in the declination of impact toughness. Methods were suggested to improve the anti- seismic properties of steel bars.展开更多
The effects of MgO/Al2 O3 ratio on the viscous behaviors of MgO-Al2 O3-TiO2-CaO-SiO2 systems were investigated by the rotating cylinder method.Raman spectroscopy was used to analyze the structural characteristics of s...The effects of MgO/Al2 O3 ratio on the viscous behaviors of MgO-Al2 O3-TiO2-CaO-SiO2 systems were investigated by the rotating cylinder method.Raman spectroscopy was used to analyze the structural characteristics of slag and Factsage 7.0 was adopted to demonstrate the liquidus temperature of slag.The results show that the viscosity and activation energy for viscous flow decrease when the MgO/Al2O3 ratio increases from 0.82 to 1.36.The break point temperature and liquidus temperature of slag initially decrease and subsequently increase.The complex viscous structures are gradually depolymerized to simple structural units.In conclusion,with the increase of MgO/Al2O3 ratio,the degree of polymerization of slag decreases,which improves the fluidity of slag.The variations of liquidus temperature of slag lead to the same changes of break point temperature.展开更多
The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously ana...The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously analyzed.The results show that with increasing sinter basicity from 1.71 to 2.36,the softening interval tends to increase from 149.3 ℃ to 181.7 ℃while the melting interval tends to decrease from 178.0 ℃ to 136.7 ℃.The location of cohesive zone moves downwards firstly and then ascends slightly,but the cohesive zone becomes thinner.The softening-melting characteristic value becomes small,which indicates that the permeability of burden column is improved.The dripping ratio of mixed burden tends to increase firstly and then decrease,which comes to the highest value of 74.50%when the sinter basicity is 2.13.The content and the recovery of V and Cr in dripping iron are all increased.The generation amount of components with high melting point in slag becomes little with the increase of sinter basicity,which could improve the permeability of mixed burden.Taking softening-melting behaviors of mixed burden and recovery of valuable elements into account,the proper sinter basicity is no less than 2.13 for smelting mixed burden made from Cr-V-Ti magnetite in blast furnace.展开更多
基金Projects(2013CB632601,2013CB632604)supported by the National Basic Research Program of ChinaProject(51125018)supported by the National Science Foundation for Distinguished Young Scholars of China+1 种基金Project(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,21106167,51104139)supported by the National Natural Science Foundation of China
文摘The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.
文摘The properties of anti-seismic HRB400 steel bars with 25 mm diameter were systematically investigated. The results showed that the properties of the HRB400 reinforced steel bars had been greatly enhanced comparing with HRB335 steel bars, i.e. coordination of strength and ductility, strain-aging sensibility, low temperature impact toughness, weld ability and high strain low cycle fatigue. The ductile-brittle transit temperatures of hot-rolled and strain-aged steel bars were evaluated as –17 °C and ?8 °C respectively, and the low temperature impact toughness of HRB400 steel bars remains to be improved. Transmission electron microscopy (TEM) and electron diffraction showed little vanadium existed in ferrite as VN, most of which existed in pearlite as alloy cementite which resulted in the declination of impact toughness. Methods were suggested to improve the anti- seismic properties of steel bars.
基金Projects(51574067,51904063)supported by the National Natural Science Foundation of ChinaProjects(N172503016,N172502005,N172506011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2018M640259)supported by China Postdoctoral Science Foundation
文摘The effects of MgO/Al2 O3 ratio on the viscous behaviors of MgO-Al2 O3-TiO2-CaO-SiO2 systems were investigated by the rotating cylinder method.Raman spectroscopy was used to analyze the structural characteristics of slag and Factsage 7.0 was adopted to demonstrate the liquidus temperature of slag.The results show that the viscosity and activation energy for viscous flow decrease when the MgO/Al2O3 ratio increases from 0.82 to 1.36.The break point temperature and liquidus temperature of slag initially decrease and subsequently increase.The complex viscous structures are gradually depolymerized to simple structural units.In conclusion,with the increase of MgO/Al2O3 ratio,the degree of polymerization of slag decreases,which improves the fluidity of slag.The variations of liquidus temperature of slag lead to the same changes of break point temperature.
基金Project(51574067)supported by the National Natural Science Fundation of ChinaProjects(2012AA062302,2012AA062304)supported by the National High Technology Research and Development Program of ChinaProject(N110202001)supported by the Fundamental Research Funds for the Central Universities of China
文摘The effect of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite(Cr-V-Ti magnetite) was investigated and the function mechanism was simultaneously analyzed.The results show that with increasing sinter basicity from 1.71 to 2.36,the softening interval tends to increase from 149.3 ℃ to 181.7 ℃while the melting interval tends to decrease from 178.0 ℃ to 136.7 ℃.The location of cohesive zone moves downwards firstly and then ascends slightly,but the cohesive zone becomes thinner.The softening-melting characteristic value becomes small,which indicates that the permeability of burden column is improved.The dripping ratio of mixed burden tends to increase firstly and then decrease,which comes to the highest value of 74.50%when the sinter basicity is 2.13.The content and the recovery of V and Cr in dripping iron are all increased.The generation amount of components with high melting point in slag becomes little with the increase of sinter basicity,which could improve the permeability of mixed burden.Taking softening-melting behaviors of mixed burden and recovery of valuable elements into account,the proper sinter basicity is no less than 2.13 for smelting mixed burden made from Cr-V-Ti magnetite in blast furnace.