A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve...A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.展开更多
We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants. Another T-type specific calcium channel blocker Amiloride can also induce the fo...We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants. Another T-type specific calcium channel blocker Amiloride can also induce the formation of cement gland, while L-type specific calcium channel blocker Nifedipine has no inductive effect. These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluax calcium concentration.展开更多
The effect of varying pore structures on the kinetics of S02-CaO reactions is not fully understood in the previous studies. Combining fractal pore model, gas molecular movement model and two-stage reaction model, a ne...The effect of varying pore structures on the kinetics of S02-CaO reactions is not fully understood in the previous studies. Combining fractal pore model, gas molecular movement model and two-stage reaction model, a new desulfurization model is established in this paper. Fractal pore model is used to simulate CaO particle and gas molecular movement model is used to simulate gas diffusion in pores. Fractal dimension is used to characterize complexity of pore structure instead of tortuosity factor. It is found that the reaction is significantly affected by pore structures. A modulus φ is introduced to characterize the relationship between varying pore structures and apparent reaction parameters. And this relationship is verified by thermo-gravimetric analysis (TGA) data. Comparing to the previous models, the effect of varying pore structure on the kinetics of the reaction is described more accurately by the desulfurization model.展开更多
基金Project(51276074)supported by the National Natural Science Foundation of ChinaProject(2014NY008)supported by Innovation Research Foundation of Huazhong University of Science and Technology,China
文摘A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature.
文摘We found T-type calcium channel blocker Ni2+ can efficiently induce the formation of cement gland in Xenopus laevis animal cap explants. Another T-type specific calcium channel blocker Amiloride can also induce the formation of cement gland, while L-type specific calcium channel blocker Nifedipine has no inductive effect. These results may offer us an new approach to study the differentiation of cement gland through the change of intracelluax calcium concentration.
基金Supported by the National Natural Science Foundation of China(51176096)
文摘The effect of varying pore structures on the kinetics of S02-CaO reactions is not fully understood in the previous studies. Combining fractal pore model, gas molecular movement model and two-stage reaction model, a new desulfurization model is established in this paper. Fractal pore model is used to simulate CaO particle and gas molecular movement model is used to simulate gas diffusion in pores. Fractal dimension is used to characterize complexity of pore structure instead of tortuosity factor. It is found that the reaction is significantly affected by pore structures. A modulus φ is introduced to characterize the relationship between varying pore structures and apparent reaction parameters. And this relationship is verified by thermo-gravimetric analysis (TGA) data. Comparing to the previous models, the effect of varying pore structure on the kinetics of the reaction is described more accurately by the desulfurization model.