In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
Solar thermochemical CO_(2)-splitting(STCS)is a promising solution for solar energy harvesting and storage.However,practical solar fuel production by utilizing earth-abundant iron/iron oxides remains a great challenge...Solar thermochemical CO_(2)-splitting(STCS)is a promising solution for solar energy harvesting and storage.However,practical solar fuel production by utilizing earth-abundant iron/iron oxides remains a great challenge because of the formation of passivation layers,resulting in slow reaction kinetics and limited CO_(2)conversion.Here,we report a novel material consisting of an iron-nickel alloy embedded in a perovskite substrate for intensified CO production via a two-step STCS process.The novel material achieved an unprecedented CO production rate of 381 mL g^(-1)min^(-1)with 99%CO_(2)conversion at 850℃,outperforming state-of-the-art materials.In situ structural analyses and density functional theory calculations show that the alloy/substrate interface is the main active site for CO_(2)splitting.Preferential oxidation of the FeNi alloy at the interface(as opposed to forming an FeO_(x)passivation shell encapsulating bare metallic iron)and rapid stabilization of the iron oxide species by the robust perovskite matrix significantly promoted the conversion of CO_(2)to CO.Facile regeneration of the alloy/perovskite interfaces was realized by isothermal methane reduction with simultaneous production of syngas(H_(2)/CO=2,syngas yield>96%).Overall,the novel perovskite-mediated dealloying-exsolution redox system facilitates highly efficient solar fuel production,with a theoretical solar-to-fuel efficiency of up to 58%,in the absence of any heat integration.展开更多
The improvement of propionic acid production for antifungal activity, as fermenting by calcium alginate immobilized cells of Propionibacterium acidipropionici TISTR 442 was investigated by using whey as substrate. Opt...The improvement of propionic acid production for antifungal activity, as fermenting by calcium alginate immobilized cells of Propionibacterium acidipropionici TISTR 442 was investigated by using whey as substrate. Optimal condition for immobilization was performed by adjusting tube distance to CaCI2 solution to be 4-6 cm and 7 mL/min flow rate of alginate gel. The production of propionic acid by immobilized cells in a 2 L fermentor using 1% CaCO3 and 5 N KOH to control the pH at 6.5 gave maximum propionic acid and they had consistent potential to recycle 2 rounds of fermentation and produced the total of 29.24 g/L propionic acid (15.85 ± 0.25 g/L and 13.39 ± 0.25 g/L propionic acid from Batch 1 and Batch 2 fermentation, respectively). Compared to free-cell fermentation, propionic acid productivity increased 20% (0.083 g/h vs. 0.070 g/h) and fermentation time reduced 11% (192 h vs. 216 h) in 2 L fermentor with 40 g/L initial total sugar from whey. The fermented propionic acid as well as the commercial propionic acid from chemical process was able to inhibit the growth of the fungal tested.展开更多
Tin perovskite solar cells (TPSCs) are the most promising candidates for lead-free perovskite solar cells(PSCs).However,the poor crystallization and chemical stability of Sn perovskites are the two challenging issues ...Tin perovskite solar cells (TPSCs) are the most promising candidates for lead-free perovskite solar cells(PSCs).However,the poor crystallization and chemical stability of Sn perovskites are the two challenging issues for further application of TPSCs.Here,we present a strategy to stabilize CH(NH_(2))2SnI3(FASnI3) perovskite enabled by an amine complex,CH3NH3I·3CH3NH_(2),which can hinder the major degradation issue caused by the oxidation of Sn2+to Sn4+.The resulting Sn perovskite films exhibit enhanced crystallinity and stability in comparison with those made with conventional inorganic SnF2 additives.Finally,the device achieved a higher external quantum efficiency for charge extraction and a power conversion efficiency (PCE) of 9.53%,which maintained more than 90%of the initial efficiency after1000 h of light soaking under the standard AM 1.5 G solar illumination.展开更多
Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by con...Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by conventional gas-pressure sintering technique at 1750℃.When it was excited at 450 nm,the as-prepared yellow Ca-SiAlON:Eu2+ sample had an external quantum efficiency of 42%,comparable to the sample synthesized at 1750℃ under 0.5 MPaN2 gas pressure by the GPS method reported in reference.The experimental results demonstrated that the microwave sintering method was also an interesting approach for synthesizing nitride phosphors,which promises lower firing temperature than those by carbothermal reduction and nitridation (CRN) methods,higher heating rate and shorter duration time compared with those by gas-pressure sintering.展开更多
Two-dimensional(2D) lead halide perovskite materials are emerging as one of promising light-absorbing materials in perovskite solar cells(PSCs), which show outstanding stability and defect passivation. Unfortunately, ...Two-dimensional(2D) lead halide perovskite materials are emerging as one of promising light-absorbing materials in perovskite solar cells(PSCs), which show outstanding stability and defect passivation. Unfortunately, the power conversion efficiency(PCE) of those stable 2D PSCs is still far behind that of 3D PSCs. Herein, we reported a simple in-situ growth technique for the ethylenediamine lead iodide(EDAPbI4) layer on the top of formamidinium lead iodide(FAPbI3) layer. The rationally designed layered architecture of2D-3 D perovskite film could improve the PCE of the PSCs. In addition, benefiting from the high moisture resistance and inhibited ion migration of EDAPbI4 layer, the 2D-3D-based devices showed obviously enhanced long-term stability,keeping the initial PCE value for 200 h and 90% of its initial PCE even after 500 h.展开更多
The quality of the perovskite light absorption layer plays a dynamic role in the photovoltaic properties of solar cells.The existing methods to prepare methylammonium lead iodide(MAPbI3)films render substantial struct...The quality of the perovskite light absorption layer plays a dynamic role in the photovoltaic properties of solar cells.The existing methods to prepare methylammonium lead iodide(MAPbI3)films render substantial structural defect density,particularly at the grain boundaries and film surface,constituting a challenge that hinders the further optoelectronic enhancement of perovskite solar cells.Herein,a unique approach was introduced:using a simple ethylammonium chloride(EACl)additive in perovskite precursor mixture to produce high-quality MAPbI3 thin films.The results indicated that EACl could encourage perovskite crystal growth without experiencing the intermediate phase formation and would evaporate from the perovskite after annealing.Additionally,a gradient perovskite structure was achieved using this technique,which impressively enhanced the performance of the perovskite films.A high power conversion efficiency(PCE)of 20.03%was achieved under the optimal amount of EACl,and the resultant efficient device could retain over 89%of the original PCE after aging for 1000 h at room temperature.This novel technique leads to a facile fabrication of highquality and less-defect perovskite thin films for competent and stable devices.展开更多
Organic-inorganic hybrid perovskites are ideal materials for photodetection owing to their high charge carrier mobility, long charge carrier diffusion length, low dark current density and sharp absorption edge. Howeve...Organic-inorganic hybrid perovskites are ideal materials for photodetection owing to their high charge carrier mobility, long charge carrier diffusion length, low dark current density and sharp absorption edge. However, a relatively small band gap(1.6 e V) limits their photonharvesting efficiency in the near-infrared region. In the present work, we demonstrate a hybrid methylamine iodide and Pb-Sn binary perovskite as the light absorption layer in photodetectors. Experimentally, the wavelength of photoresponse onset for the photodetectors can be extended to as great as 1,000 nm when the Sn content of the hybrid perovskite is increased to 30 mol%. In addition, the photodetectors exhibit a photoresponsivity of 0.39 A W^-1, a specific detectivity of 7×10^12 Jones, a fast photoresponse with rise and decay time constants and an external quantum efficiency greater than 50% in the wavelength range of350–900 nm, with a maximum value of about 80% at 550 nm.展开更多
The power conversion effciency(PCE)of flexible perovskite solar cells(PSCs)has increased rapidly,while the mechanical flexibility and environmental stability are still far from satisfactory.Previous studies show the e...The power conversion effciency(PCE)of flexible perovskite solar cells(PSCs)has increased rapidly,while the mechanical flexibility and environmental stability are still far from satisfactory.Previous studies show the environmental degradation and ductile cracks of perovskite films usually begin at the grain boundaries(GBs).Herein,sulfonated graphene oxide(s-GO)is employed to construct a cementitious GBs by interacting with the[Pb I6]4–at GBs.The resultant s-GO-[Pb I6]4–complex can effectively passivate the defects of vacant iodine,and the devices with s-GO exhibit remarkable waterproofness and flexibility due to the tough and water-insoluble GBs.The champion PCE of 20.56%(1.01 cm^(2))in a device treated with s-GO is achieved.This device retains 90%of its original PCE after 180 d stored in the ambient condition,as well as over 80%retention after 10,000 bending cycles at a curvature radius of 3 mm.展开更多
Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the ex...Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field.We propose a heterojunction route to help suppress ion migration,thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber.A heavily doped p-type(p^(+))thin layer semiconductor is introduced between the electron transporting layer(ETL)and perovskite absorber.The heterojunction charge depletion and electric field are limited to the ETL and p^(+)layers,while the perovskite absorber and hole transporting layer remain neutral.The p^(+)layer has a variety of candidate materials and is tolerant of defect density and carrier mobility,which makes this heterojunction route highly feasible and promising for use in practical applications.展开更多
Perovskite solar cells(PSCs)attract widespread research interest due to their exceptional properties.However,the instability of the perovskite layer,especially the moisture instability,and existing defects seriously r...Perovskite solar cells(PSCs)attract widespread research interest due to their exceptional properties.However,the instability of the perovskite layer,especially the moisture instability,and existing defects seriously restrict the performance and limit the development of PSCs towards commercialization.Herein,we fabricate moisture-stable and efficient PSCs by incorporating a thiamine(THM)additive into a lead iodide(PbI_(2))precursor using a two-step spin-coating method.This strategy enables a better interaction between the THM additive and PbI_(2).Then,a higher energy barrier is produced when the material reacts with A-site cations to form perovskite crystals,resulting in larger grains and better-quality perovskite films.Through optimization of the concentration of the THM additive,the optimal perovskite achieves improved moisture stability and decreased trap states;thus,the corresponding unencapsulated devices achieve a remarkable power conversion efficiency(PCE)of 21.40%and maintain>92%of their initial PCE after 180 h in ambient air(~50%humidity).The excellent performance is mainly attributed to the fact that THM promotes crystal growth and passivates defects in perovskite films.展开更多
The grain boundaries and interface properties in the active layers of perovskite solar cells(PSCs)are important factors affecting the performances of the devices.In this work,a simple and fast concomitant annealing pr...The grain boundaries and interface properties in the active layers of perovskite solar cells(PSCs)are important factors affecting the performances of the devices.In this work,a simple and fast concomitant annealing process is established by inducing the secondary growth of the grains using the anti-solvent o-dichlorobenzene(o-PhCl2)or chlorobenzene(PhCl)to suppress the volatilization of solvent molecules during the FA0.80MA0.15Cs0.05Pb(I0.85Br0.15)3(FA,CH5N2+,formamidine;MA,CH3NH3+,methylamine)film annealing procedure.The effects of anti-solvent molecules on the phase transformation,grain boundary fusion and morphology evolution of perovskite films are systematically investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results indicate that anti-solvent molecules can inhibit solvent evaporation in the active layers and promote crystallite dissolution and ordered secondary growth along the surfaces of large grains.That can promote the formation of large grains and the passivation of surface defects,and can be favorable for the separation and transportation of photocarriers in the active layer.Consequently,the power conversion efficiency(PCE)of PSCs can be effectively improved,with a PCE of 20.72%being achieved by a secondary growth perovskite film optimized with o-PhCl2.Moreover,the efficiency remains at 85%of its initial value after 2400 h of treatment in a natural indoor environment with a relative humidity of 45±5%.展开更多
The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability o...The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells(PSCs).Therefore,it is urgent to develop an effective strategy to address these issues.Herein,a multifunctional material,phospho-ethanolamine(PE),is introduced into SnO_(2)aqueous colloids to suppress defects and prepare high-quality ETL.The results demonstrate that the incorporation of PE can significantly reduce the number of Sn dangling bonds due to the formation of new Sn–O–P bonds,which is beneficial to ameliorating the electrical properties of SnO_(2)and obtaining dense SnO_(2)film.Meanwhile,the amino group(NH_(2))of PE can interact with uncoordinated Pb^(2+)in perovskite,thereby suppressing SnO_(2)/perovskite interface defects and obtaining improved perovskite film quality.Consequently,the optimized flexible and rigid PSCs based on the SnO_(2)-PE composite ETL yield outstanding photoelectric conversion efficiency(PCE)of 18.48%and 21.61%,respectively.Moreover,flexible PSCs based on SnO_(2)-PE present excellent mechanical durability,and 90.6%of the original PCE is retained after 1000 bending cycles.展开更多
Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that ...Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that prevent stable TPSCs.In this study,we outline a new process that addresses these issues by using tin(II)acetate(Sn(Ac)2)in place of the conventional SnF2 precursor additive.Compared with SnF2,Sn(Ac)2 improves the crystallinity and stability of tin perovskite with fewer defects and better charge extraction.Using this process,we developed a device that has a higher external quantum efficiency for charge extraction compared with the control devices and a power conversion efficiency of 9.93%,which maintained more than 90%of its initial efficiency after 1000 h operation at the maximum power point under standard AM 1.5G solar illumination.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.
文摘Solar thermochemical CO_(2)-splitting(STCS)is a promising solution for solar energy harvesting and storage.However,practical solar fuel production by utilizing earth-abundant iron/iron oxides remains a great challenge because of the formation of passivation layers,resulting in slow reaction kinetics and limited CO_(2)conversion.Here,we report a novel material consisting of an iron-nickel alloy embedded in a perovskite substrate for intensified CO production via a two-step STCS process.The novel material achieved an unprecedented CO production rate of 381 mL g^(-1)min^(-1)with 99%CO_(2)conversion at 850℃,outperforming state-of-the-art materials.In situ structural analyses and density functional theory calculations show that the alloy/substrate interface is the main active site for CO_(2)splitting.Preferential oxidation of the FeNi alloy at the interface(as opposed to forming an FeO_(x)passivation shell encapsulating bare metallic iron)and rapid stabilization of the iron oxide species by the robust perovskite matrix significantly promoted the conversion of CO_(2)to CO.Facile regeneration of the alloy/perovskite interfaces was realized by isothermal methane reduction with simultaneous production of syngas(H_(2)/CO=2,syngas yield>96%).Overall,the novel perovskite-mediated dealloying-exsolution redox system facilitates highly efficient solar fuel production,with a theoretical solar-to-fuel efficiency of up to 58%,in the absence of any heat integration.
文摘The improvement of propionic acid production for antifungal activity, as fermenting by calcium alginate immobilized cells of Propionibacterium acidipropionici TISTR 442 was investigated by using whey as substrate. Optimal condition for immobilization was performed by adjusting tube distance to CaCI2 solution to be 4-6 cm and 7 mL/min flow rate of alginate gel. The production of propionic acid by immobilized cells in a 2 L fermentor using 1% CaCO3 and 5 N KOH to control the pH at 6.5 gave maximum propionic acid and they had consistent potential to recycle 2 rounds of fermentation and produced the total of 29.24 g/L propionic acid (15.85 ± 0.25 g/L and 13.39 ± 0.25 g/L propionic acid from Batch 1 and Batch 2 fermentation, respectively). Compared to free-cell fermentation, propionic acid productivity increased 20% (0.083 g/h vs. 0.070 g/h) and fermentation time reduced 11% (192 h vs. 216 h) in 2 L fermentor with 40 g/L initial total sugar from whey. The fermented propionic acid as well as the commercial propionic acid from chemical process was able to inhibit the growth of the fungal tested.
基金supported by the National Natural Science Foundation of China (11674219,11834011 and 11911530142)the KAKEHI Grant of Japan (18H02078)。
文摘Tin perovskite solar cells (TPSCs) are the most promising candidates for lead-free perovskite solar cells(PSCs).However,the poor crystallization and chemical stability of Sn perovskites are the two challenging issues for further application of TPSCs.Here,we present a strategy to stabilize CH(NH_(2))2SnI3(FASnI3) perovskite enabled by an amine complex,CH3NH3I·3CH3NH_(2),which can hinder the major degradation issue caused by the oxidation of Sn2+to Sn4+.The resulting Sn perovskite films exhibit enhanced crystallinity and stability in comparison with those made with conventional inorganic SnF2 additives.Finally,the device achieved a higher external quantum efficiency for charge extraction and a power conversion efficiency (PCE) of 9.53%,which maintained more than 90%of the initial efficiency after1000 h of light soaking under the standard AM 1.5 G solar illumination.
基金supported by the National Natural Science Foundation of China(51102252 and 51272259)the Special Foundation for Young Scientists of Zhejiang Province(R12E020005)
文摘Pure Ca-SiAlON:Eu2+ was synthesized by microwave sintering method at a relatively low temperature of 1550℃.Photoluminescence intensity of the resultant phosphor was higher than those of the samples synthesized by conventional gas-pressure sintering technique at 1750℃.When it was excited at 450 nm,the as-prepared yellow Ca-SiAlON:Eu2+ sample had an external quantum efficiency of 42%,comparable to the sample synthesized at 1750℃ under 0.5 MPaN2 gas pressure by the GPS method reported in reference.The experimental results demonstrated that the microwave sintering method was also an interesting approach for synthesizing nitride phosphors,which promises lower firing temperature than those by carbothermal reduction and nitridation (CRN) methods,higher heating rate and shorter duration time compared with those by gas-pressure sintering.
基金supported by the National Key Research and Development Program of China (2016YFA0202400)the 111 Project (B16016)+2 种基金the National Natural Science Foundation of China (51572080, 51702096 and U1705256)the Fundamental Research Funds for the Central Universities (2018ZD07, 2017MS021 and 2019MS027)the Double Top Construction Program of North China Electric Power University (XM1805314)
文摘Two-dimensional(2D) lead halide perovskite materials are emerging as one of promising light-absorbing materials in perovskite solar cells(PSCs), which show outstanding stability and defect passivation. Unfortunately, the power conversion efficiency(PCE) of those stable 2D PSCs is still far behind that of 3D PSCs. Herein, we reported a simple in-situ growth technique for the ethylenediamine lead iodide(EDAPbI4) layer on the top of formamidinium lead iodide(FAPbI3) layer. The rationally designed layered architecture of2D-3 D perovskite film could improve the PCE of the PSCs. In addition, benefiting from the high moisture resistance and inhibited ion migration of EDAPbI4 layer, the 2D-3D-based devices showed obviously enhanced long-term stability,keeping the initial PCE value for 200 h and 90% of its initial PCE even after 500 h.
基金supported by the National Key R&D Program of China(2019YFB1503202)the 111 Project(B16016)+1 种基金the National Natural Science Foundation of China(51702096,U1705256 and 61904053)the Fundamental Research Funds for the Central Universities(2019MS026,2019MS027 and 2020MS080)。
文摘The quality of the perovskite light absorption layer plays a dynamic role in the photovoltaic properties of solar cells.The existing methods to prepare methylammonium lead iodide(MAPbI3)films render substantial structural defect density,particularly at the grain boundaries and film surface,constituting a challenge that hinders the further optoelectronic enhancement of perovskite solar cells.Herein,a unique approach was introduced:using a simple ethylammonium chloride(EACl)additive in perovskite precursor mixture to produce high-quality MAPbI3 thin films.The results indicated that EACl could encourage perovskite crystal growth without experiencing the intermediate phase formation and would evaporate from the perovskite after annealing.Additionally,a gradient perovskite structure was achieved using this technique,which impressively enhanced the performance of the perovskite films.A high power conversion efficiency(PCE)of 20.03%was achieved under the optimal amount of EACl,and the resultant efficient device could retain over 89%of the original PCE after aging for 1000 h at room temperature.This novel technique leads to a facile fabrication of highquality and less-defect perovskite thin films for competent and stable devices.
基金the International Cooperation Foundation of China (2015DFR10700)the National Natural Science Foundation of China (51403203) for the support of this researchthe support of the Russian Ministry of Education and Science state assignment (3.3197.2017/ПЧ)
文摘Organic-inorganic hybrid perovskites are ideal materials for photodetection owing to their high charge carrier mobility, long charge carrier diffusion length, low dark current density and sharp absorption edge. However, a relatively small band gap(1.6 e V) limits their photonharvesting efficiency in the near-infrared region. In the present work, we demonstrate a hybrid methylamine iodide and Pb-Sn binary perovskite as the light absorption layer in photodetectors. Experimentally, the wavelength of photoresponse onset for the photodetectors can be extended to as great as 1,000 nm when the Sn content of the hybrid perovskite is increased to 30 mol%. In addition, the photodetectors exhibit a photoresponsivity of 0.39 A W^-1, a specific detectivity of 7×10^12 Jones, a fast photoresponse with rise and decay time constants and an external quantum efficiency greater than 50% in the wavelength range of350–900 nm, with a maximum value of about 80% at 550 nm.
基金support from the National Natural Science Foundation of China(NSFC)(51673091,51833004,and 51425304)NSFC-Guangdong Joint funding(U1801256)+2 种基金support from the National Key R&D Program of China(2018YFA0208501)the National Natural Science Foundation of China(51803217,91963212,51961145102,and 51773206)K.C.Wong Education Foundation。
文摘The power conversion effciency(PCE)of flexible perovskite solar cells(PSCs)has increased rapidly,while the mechanical flexibility and environmental stability are still far from satisfactory.Previous studies show the environmental degradation and ductile cracks of perovskite films usually begin at the grain boundaries(GBs).Herein,sulfonated graphene oxide(s-GO)is employed to construct a cementitious GBs by interacting with the[Pb I6]4–at GBs.The resultant s-GO-[Pb I6]4–complex can effectively passivate the defects of vacant iodine,and the devices with s-GO exhibit remarkable waterproofness and flexibility due to the tough and water-insoluble GBs.The champion PCE of 20.56%(1.01 cm^(2))in a device treated with s-GO is achieved.This device retains 90%of its original PCE after 180 d stored in the ambient condition,as well as over 80%retention after 10,000 bending cycles at a curvature radius of 3 mm.
基金supported by the National Natural Science Foundation of China(52072402,11874402,51627803,51421002,91733301,51761145042,and 51872321)the International Partnership Program of Chinese Academy of Sciences(112111KYSB20170089)。
文摘Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field.We propose a heterojunction route to help suppress ion migration,thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber.A heavily doped p-type(p^(+))thin layer semiconductor is introduced between the electron transporting layer(ETL)and perovskite absorber.The heterojunction charge depletion and electric field are limited to the ETL and p^(+)layers,while the perovskite absorber and hole transporting layer remain neutral.The p^(+)layer has a variety of candidate materials and is tolerant of defect density and carrier mobility,which makes this heterojunction route highly feasible and promising for use in practical applications.
基金financially supported by the National Natural Science Foundation of China(52025028,52072254,and 52002258)the Natural Science Foundation of Jiangsu Province(BK20200877)+1 种基金the"Shuangchuang"Program of Jiangsu Provincethe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘Perovskite solar cells(PSCs)attract widespread research interest due to their exceptional properties.However,the instability of the perovskite layer,especially the moisture instability,and existing defects seriously restrict the performance and limit the development of PSCs towards commercialization.Herein,we fabricate moisture-stable and efficient PSCs by incorporating a thiamine(THM)additive into a lead iodide(PbI_(2))precursor using a two-step spin-coating method.This strategy enables a better interaction between the THM additive and PbI_(2).Then,a higher energy barrier is produced when the material reacts with A-site cations to form perovskite crystals,resulting in larger grains and better-quality perovskite films.Through optimization of the concentration of the THM additive,the optimal perovskite achieves improved moisture stability and decreased trap states;thus,the corresponding unencapsulated devices achieve a remarkable power conversion efficiency(PCE)of 21.40%and maintain>92%of their initial PCE after 180 h in ambient air(~50%humidity).The excellent performance is mainly attributed to the fact that THM promotes crystal growth and passivates defects in perovskite films.
基金the National Natural Science Foundation of China(21676188)the Science and Technology Plan Project of Tianjin(19ZXNCGX00020)the National Key R&D Program of China(2016YFB0401303)。
文摘The grain boundaries and interface properties in the active layers of perovskite solar cells(PSCs)are important factors affecting the performances of the devices.In this work,a simple and fast concomitant annealing process is established by inducing the secondary growth of the grains using the anti-solvent o-dichlorobenzene(o-PhCl2)or chlorobenzene(PhCl)to suppress the volatilization of solvent molecules during the FA0.80MA0.15Cs0.05Pb(I0.85Br0.15)3(FA,CH5N2+,formamidine;MA,CH3NH3+,methylamine)film annealing procedure.The effects of anti-solvent molecules on the phase transformation,grain boundary fusion and morphology evolution of perovskite films are systematically investigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results indicate that anti-solvent molecules can inhibit solvent evaporation in the active layers and promote crystallite dissolution and ordered secondary growth along the surfaces of large grains.That can promote the formation of large grains and the passivation of surface defects,and can be favorable for the separation and transportation of photocarriers in the active layer.Consequently,the power conversion efficiency(PCE)of PSCs can be effectively improved,with a PCE of 20.72%being achieved by a secondary growth perovskite film optimized with o-PhCl2.Moreover,the efficiency remains at 85%of its initial value after 2400 h of treatment in a natural indoor environment with a relative humidity of 45±5%.
基金the National Key Research and Development Program of China(2020YFA0715000).
文摘The non-radiative recombination loss caused by diverse defects within SnO_(2)electron transport layer(ETL),perovskite film,and their interface greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells(PSCs).Therefore,it is urgent to develop an effective strategy to address these issues.Herein,a multifunctional material,phospho-ethanolamine(PE),is introduced into SnO_(2)aqueous colloids to suppress defects and prepare high-quality ETL.The results demonstrate that the incorporation of PE can significantly reduce the number of Sn dangling bonds due to the formation of new Sn–O–P bonds,which is beneficial to ameliorating the electrical properties of SnO_(2)and obtaining dense SnO_(2)film.Meanwhile,the amino group(NH_(2))of PE can interact with uncoordinated Pb^(2+)in perovskite,thereby suppressing SnO_(2)/perovskite interface defects and obtaining improved perovskite film quality.Consequently,the optimized flexible and rigid PSCs based on the SnO_(2)-PE composite ETL yield outstanding photoelectric conversion efficiency(PCE)of 18.48%and 21.61%,respectively.Moreover,flexible PSCs based on SnO_(2)-PE present excellent mechanical durability,and 90.6%of the original PCE is retained after 1000 bending cycles.
基金the National Natural Science Foundation of China(11834011 and 11911530142)。
文摘Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that prevent stable TPSCs.In this study,we outline a new process that addresses these issues by using tin(II)acetate(Sn(Ac)2)in place of the conventional SnF2 precursor additive.Compared with SnF2,Sn(Ac)2 improves the crystallinity and stability of tin perovskite with fewer defects and better charge extraction.Using this process,we developed a device that has a higher external quantum efficiency for charge extraction compared with the control devices and a power conversion efficiency of 9.93%,which maintained more than 90%of its initial efficiency after 1000 h operation at the maximum power point under standard AM 1.5G solar illumination.