Experiments were carried out to study the transformation of mercury in soils. Results showed that Hg 2+ was immediately converted into other forms once it entered into soils. Bentonite, humus or CaCO 3 accelera...Experiments were carried out to study the transformation of mercury in soils. Results showed that Hg 2+ was immediately converted into other forms once it entered into soils. Bentonite, humus or CaCO 3 accelerated the transformation of Hg 2+ by various mechanisms. Bentonite could convert Hg 2+ into residual form eventually, and application of CaCO 3 enhanced the formation of inorganic Hg. Humus competed strongly with clay minerals for binding Hg 2+ , thus increase of soil humus content led to increased formation of organically bound Hg.展开更多
Background Circulating microparticles (MPs) have been reported to be associated with coronary artery disease (CAD). In this study, we explored the relationship between MPs procoagulant activity and characteristics...Background Circulating microparticles (MPs) have been reported to be associated with coronary artery disease (CAD). In this study, we explored the relationship between MPs procoagulant activity and characteristics of atherosclerotic plaque detected by 64-slice computed tomography angiography (CTA). Methods In 127 consecutive patients with CAD but without acute coronary syndrome and who under went 64-slice CTA, MPs procoagulant activity in plasma Coy a thrombin generation test), soluble form of lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and N(epsilon)-(carboxymethyl) lysine (CML) circulating levels (by ELISA) were measured. A quantitative volumetric analysis of the lumen and plaque burden of the vessel wall (soft and calcific components), for the three major coronary vessels, was performed. The patients were classified in three groups according to the presence of calcium volume: non-calcified plaque (NCP) group (calcium volume (%) = 0), moderate calcified plaque (MCP) group (0 〈 calcium volume (%) 〈 1), and calcified plaque (CP) group (calcium volume (%) 〉 1). Results MPs procoagulant activity and CML levels were higher in MCP group than in CP or NCP group (P = 0.009 and P = 0.027, respectively). MPs procoagulant activity was positively associated with CML (r = 0.317, P 〈 0.0001) and sLOX-1 levels (r = 0.216, P = 0.0025). Conclusions MPs procoagulant activity was higher in the MCP patient group and correlated positively with sLOX-1 and CML levels, suggesting that it may characterize a state of blood vulnerability that may locally precipitate plaque instability and increase the risk of subsequent major cardiovascular events.展开更多
文摘Experiments were carried out to study the transformation of mercury in soils. Results showed that Hg 2+ was immediately converted into other forms once it entered into soils. Bentonite, humus or CaCO 3 accelerated the transformation of Hg 2+ by various mechanisms. Bentonite could convert Hg 2+ into residual form eventually, and application of CaCO 3 enhanced the formation of inorganic Hg. Humus competed strongly with clay minerals for binding Hg 2+ , thus increase of soil humus content led to increased formation of organically bound Hg.
文摘Background Circulating microparticles (MPs) have been reported to be associated with coronary artery disease (CAD). In this study, we explored the relationship between MPs procoagulant activity and characteristics of atherosclerotic plaque detected by 64-slice computed tomography angiography (CTA). Methods In 127 consecutive patients with CAD but without acute coronary syndrome and who under went 64-slice CTA, MPs procoagulant activity in plasma Coy a thrombin generation test), soluble form of lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and N(epsilon)-(carboxymethyl) lysine (CML) circulating levels (by ELISA) were measured. A quantitative volumetric analysis of the lumen and plaque burden of the vessel wall (soft and calcific components), for the three major coronary vessels, was performed. The patients were classified in three groups according to the presence of calcium volume: non-calcified plaque (NCP) group (calcium volume (%) = 0), moderate calcified plaque (MCP) group (0 〈 calcium volume (%) 〈 1), and calcified plaque (CP) group (calcium volume (%) 〉 1). Results MPs procoagulant activity and CML levels were higher in MCP group than in CP or NCP group (P = 0.009 and P = 0.027, respectively). MPs procoagulant activity was positively associated with CML (r = 0.317, P 〈 0.0001) and sLOX-1 levels (r = 0.216, P = 0.0025). Conclusions MPs procoagulant activity was higher in the MCP patient group and correlated positively with sLOX-1 and CML levels, suggesting that it may characterize a state of blood vulnerability that may locally precipitate plaque instability and increase the risk of subsequent major cardiovascular events.