The structure-property relationship of Fe-doped SrCoO3-δ was studied. With increase of Fe content in SrCol-xFexO3-δ from x=0 to x=0.2, the phase composition changed pro- gressively in the order of hexagonal→brownmi...The structure-property relationship of Fe-doped SrCoO3-δ was studied. With increase of Fe content in SrCol-xFexO3-δ from x=0 to x=0.2, the phase composition changed pro- gressively in the order of hexagonal→brownmillerite (main)+hexagonal→cubic (main)+ brownmillerite→single cubic phase. Transition between the hexagonal/brownmillerite phase and the cubic phase took place with variation of the operating conditions, and was associated with remarkable changes in the electrical conductivity and oxygen permeation flux.展开更多
Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structur...Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structures prepared by a one‐step citrate complexing method.The catalytic performances of the Cu‐LaCoO3 catalysts were found to depend on the Cu loading and pretreatment conditions.The catalyst with 10 wt%Cu loading exhibited the best catalytic performance after prereduction in 5%H2‐95%N2,achieving a high FFA conversion of 100%and selectivity of 55.5%for 1,5‐pentanediol(40.3%)and 1,2‐pentanediol(15.2%)at 413 K and 6 MPa H2.This catalyst could be reused four times without a loss of FFA conversion but it resulted in a slight decrease in pentanediol selectivity.Correlation between the structural changes in the catalysts at different states and the simultaneous variation in the catalytic performance revealed that cooperative catalysis between Cu0 and CoO promoted the hydrogenolysis of FFA to PeDs,especially to 1,5‐PeD,while Co0 promoted the hydrogenation of FFA to tetrahydrofurfuryl alcohol(THFA).Therefore,it is suggested that a synergetic effect between balanced Cu0 and CoO sites plays a critical role in achieving a high yield of PeDs with a high 1,5‐/1,2‐pentanediol selectivity ratio during FFA hydrogenolysis.展开更多
This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si subs...This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si substrate by using PT transition layer and PVP additive. The thick film possesses single-phase perovskite structure and perfectly (100) oriented. The (100) orientation degree of the PZT films strongly depended on annealing time and for the 4μm-thick PZT film which was annealed at 700℃ for 5 min is the largest. The (100) orientation degree of the PZT thick film gradually strengthen along with the thickness of film decreasing. The 3μm-thick PZT thick film which was annealed at 700℃ for 5 rain has the strongest (100) orientation degree, which is 82. 3%.展开更多
Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1)...Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1) membrane shows the highest oxygen permeation flux, which can reach 1.6 ml. min- 1. cm-2 at 950 ℃ under the gradient of air/He. The O2-TPD results reveal that BaFe0.9Ta0.lO3-a material shows an excellent reversibility and phase structure stability in air. The oxygen permeation flux is limited by the bulk diffusion when the membrane thick- ness is over 0.8 mm, and it is limited by both the bulk diffusion and the surface exchange when the membrane thickness is below 0.5 mm. Stable oxygen permeation fluxes are obtained during 180 h operation.展开更多
Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)...Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)perovskite oxide.The obtained porous layered LSCF has a large specific surface area of 23.74 m^(2)/g,four times higher than that prepared by the traditional sol-gel method(5.08 m^(2)/g).The oxygen reduction reaction activity of the oxide in 0.1 mol/L KOH solution was studied using a rotating ring-disk electrode.In the tests,the initial potential of 0.88 V(vs.reversible hydrogen electrode)and the limiting diffusion current density of 5.02 mA/cm^(2)were obtained at 1600 r/min.Therefore,higher catalytic activity and stability were demonstrated,compared with the preparation of LSCF perovskite oxide by the traditional method.展开更多
The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different M...The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different Mn-O bond lengths indicate that there is a strong Jahn-Teller distortion of the MnO6 octahedron, which associates with a structural phase transition from cubic symmetry (Pm3m) to tetragonal symmetry (I4/mcm), and the Jahn- Teller ordering stabilizes a chain like (C-type) antiferromagnetie ground state. The electronic structures indicate that SrMnO3 and Sr1-xCexMnO3 (z=0.125 and 0.25) are semiconductor and metallic, respectively. The doping of SrMnO3 with cerium induces simultaneously a decrease in the electrical resistivity, which can be attributed to the formation of Mn3+ as a result of charge compensation. The density of states and charge density map present that hybridization exists between some of O bands with those of Mn and Ce bands, the bonding between Sr and O is mainly ionic. Density of states and magnetic moment calculations show that the formal valence state of the Ce ion is trivalence.展开更多
Cobalt-free oxides GdxBal-xFeO3-σas(0.01 _〈 x _〈 0.1 ) were achieved by a solid state reaction method. It is found that GdxBal-xFeO3-σas(0.025 _〈 x _〈 0.1) exhibits the cubic perovskite structure. Among GdxB...Cobalt-free oxides GdxBal-xFeO3-σas(0.01 _〈 x _〈 0.1 ) were achieved by a solid state reaction method. It is found that GdxBal-xFeO3-σas(0.025 _〈 x _〈 0.1) exhibits the cubic perovskite structure. Among GdxBal-xFeO3-σas (0.025 -〈 x -〈 0.1 ), the GdxBal-xFeO3-σas (GBF2.5) membrane shows the outstanding phase structure stability and the highest oxygen permeation, which can reach 1.44 ml. cm- 2. rain- 1 at 950 ℃ under air/He oxygen partial pressure gradient. The GBF2.5 membrane was successfully operated for more than 100 h at 800 ℃ and the oxygen permeation flux through the membrane is 0.62 ml. cm- 2. rain- 1. After 100 h oxygen permeation experiment at 800℃, X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDXS) demonstrate that the GBF2.5 exhibits phase structure stability even at intermediate temoerature.展开更多
A thermodynamic model has been developed to determine the reaction conditions favoring low temperature direct synthesis of barium titanate (BaTiO3). The method utilizes standard-state thermodynamic data for solid and ...A thermodynamic model has been developed to determine the reaction conditions favoring low temperature direct synthesis of barium titanate (BaTiO3). The method utilizes standard-state thermodynamic data for solid and aqueous species and a 0ebye-Huckel coefficients model to represent solution nonideality. The method has been used to generate phase stability diagrams that indicate the ranges of pH and reagent concentrations, for which various species predominate in the system at a given temperature. Also, yield diagrams have been constructed that indicate the concentration, pH and temperature conditions for which different yields of crystalline BaTiO3 can be obtained. The stability and yield diagrams have been used to predict the optimum synthesis conditions (e.g., reagent concentrations, pH and temperature). Subsequently, these predictions have been experimentally verified. As a result, phase-pure perovskite BaTiO3 has been obtained at temperature ranging from 55 to 85℃ using BaCl2, TiCl4 as a source for Ba and Ti, and NaOH as a precipitator.展开更多
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis...Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.展开更多
The lead-free SrZrO3-modified Bi0.5Na0.5TiO3(BNT-SZ100 x, with x=0-0.15) ceramics were fabricated by a conventional solid-state reaction method. The effects of SZ addition on BNT ceramics were investigated through X-r...The lead-free SrZrO3-modified Bi0.5Na0.5TiO3(BNT-SZ100 x, with x=0-0.15) ceramics were fabricated by a conventional solid-state reaction method. The effects of SZ addition on BNT ceramics were investigated through X-ray diffraction(XRD), scanning electron microscopy(SEM), ferroelectric and electric field-induced strain characterizations. XRD analysis revealed a pure perovskite phase without any traces of secondary phases. Ferroelectric and bipolar field induced-strain curves indicated a disruption of ferroelectric order upon SZ addition into BNT ceramics. A maximum value of remnant polarization(32 μC/cm2) and piezoelectric constant(102 pC/N) was observed at 5%(mole fraction) of SZ. Maximum value of the electric field-induced strain(Smax=0.24%) corresponding to normalized strain(Smax/Emax= d*33= 340 pm/V) was obtained at BNT-SZ9.展开更多
Two thin-film 2 D organic-inorganic hybrid perovskites,i.e.,2-phenylethylammonium lead iodide(PEPI)and 4-phenyl-1-butylammonium lead iodide(PBPI)were synthesized and investigated by steady-state absorption,temperature...Two thin-film 2 D organic-inorganic hybrid perovskites,i.e.,2-phenylethylammonium lead iodide(PEPI)and 4-phenyl-1-butylammonium lead iodide(PBPI)were synthesized and investigated by steady-state absorption,temperature-dependent photoluminescence,and temperature-dependent ultrafast transient absorption spectroscopy.PBPI has a longer organic chain(via introducing extra ethyl groups)than PEPI,thus its inorganic skeleton can be distorted,bringing on structural disorder.The comparative analyses of spectral profiles and temporal dynamics revealed that the greater structural disorder in PBPI results in more defect states serving as trap states to promote exciton dynamics.In addition,the fine-structuring of excitonic resonances was unveiled by temperature-dependent ultrafast spectroscopy,suggesting its correlation with inorganic skeleton rather than organic chain.Moreover,the photoexcited coherent phonons were observed in both PEPI and PBPI,pointing to a subtle impact of structural disorder on the low-frequency Raman-active vibrations of inorganic skeleton.This work provides valuable insights into the optical properties,excitonic behaviors and dynamics,as well as coherent phonon effects in 2 D hybrid perovskites.展开更多
Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sin...Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.展开更多
The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-...The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-x Ce xFeO 3(·K) has a good thermal stability if x is less than or equal to 0.5 . But when x is greater than 0.5 , La 1-x Ce xFeO 3(·K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x=0.5, the conversion of carbon monoxide is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity, and has little impact on the thermal stability. La 0.5 Ce 0.5 FeO 3 (·K) is a promising chromium free high temperature shift catalyst.展开更多
The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a si...The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.展开更多
Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport p...Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport properties follow the same trend as that of available experimental values. These are scientifically and technologically important materials with orthorhombic perovskite-like structure and space group Pbnm. Lanthanum ferrite, LaFeO3 is semiconducting and antiferrom agnetically ordered at zero. The thermodynamics of perovskite-type or related materials of potential use in, e.g., solid oxide fuel cells have been studied to a rather limited extent only.展开更多
Systematic studies of the transport properties of La0.67Ca0.33Mn1- FexO3 (x=0?0.3) systems showed that with x increasing Fe-doping content x the resistance increases and the insulator-metal transition temperature move...Systematic studies of the transport properties of La0.67Ca0.33Mn1- FexO3 (x=0?0.3) systems showed that with x increasing Fe-doping content x the resistance increases and the insulator-metal transition temperature moves to lower temperature. For small doping content, the transport property satisfies metal transport behavior below the transition tem- perature, and above the transition temperature it satisfies the small polaron model. This behavior can be explained by Fe3+ doping, which easily forms Fe3+-O2 -Mn4+channel, suppressing the double exchange Mn3+-O2 -Mn4+ channel and enhancing ? ? the spin scattering of Mn ions induced by antiferromagnetic clusters of Fe ions.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexib...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.展开更多
文摘The structure-property relationship of Fe-doped SrCoO3-δ was studied. With increase of Fe content in SrCol-xFexO3-δ from x=0 to x=0.2, the phase composition changed pro- gressively in the order of hexagonal→brownmillerite (main)+hexagonal→cubic (main)+ brownmillerite→single cubic phase. Transition between the hexagonal/brownmillerite phase and the cubic phase took place with variation of the operating conditions, and was associated with remarkable changes in the electrical conductivity and oxygen permeation flux.
文摘Selective hydrogenolysis of biomass‐derived furfuryl alcohol(FFA)to 1,5‐and 1,2‐pentanediol(PeD)was conducted over Cu‐LaCoO3 catalysts with different Cu loadings;the catalysts were derived from perovskite structures prepared by a one‐step citrate complexing method.The catalytic performances of the Cu‐LaCoO3 catalysts were found to depend on the Cu loading and pretreatment conditions.The catalyst with 10 wt%Cu loading exhibited the best catalytic performance after prereduction in 5%H2‐95%N2,achieving a high FFA conversion of 100%and selectivity of 55.5%for 1,5‐pentanediol(40.3%)and 1,2‐pentanediol(15.2%)at 413 K and 6 MPa H2.This catalyst could be reused four times without a loss of FFA conversion but it resulted in a slight decrease in pentanediol selectivity.Correlation between the structural changes in the catalysts at different states and the simultaneous variation in the catalytic performance revealed that cooperative catalysis between Cu0 and CoO promoted the hydrogenolysis of FFA to PeDs,especially to 1,5‐PeD,while Co0 promoted the hydrogenation of FFA to tetrahydrofurfuryl alcohol(THFA).Therefore,it is suggested that a synergetic effect between balanced Cu0 and CoO sites plays a critical role in achieving a high yield of PeDs with a high 1,5‐/1,2‐pentanediol selectivity ratio during FFA hydrogenolysis.
基金Sponsored by 863 Scientific Project of China (Grant No.2007AA03Z103)the National Natural Science Foundation of China (Grant No.50742007)the Key Laboratory Foundation of Sonar Technology of China(Grant No. 9140C24KF0901)
文摘This paper reports that dense and crack-free (100) oriented lead zirconate titanate (Pb( Zr0. 52Ti0. 48 )O3, PZT) thick film embedded with PZT nanopartieles has been successfully fabricated on Pt/Cr/SiO2/Si substrate by using PT transition layer and PVP additive. The thick film possesses single-phase perovskite structure and perfectly (100) oriented. The (100) orientation degree of the PZT films strongly depended on annealing time and for the 4μm-thick PZT film which was annealed at 700℃ for 5 min is the largest. The (100) orientation degree of the PZT thick film gradually strengthen along with the thickness of film decreasing. The 3μm-thick PZT thick film which was annealed at 700℃ for 5 rain has the strongest (100) orientation degree, which is 82. 3%.
基金the National Science Fund for Distinguished Young Scholars of China(No.21225625)the National Natural Science Foundation of China(No.21176087)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110172110013)
文摘Cobalt-free perovskite-type oxides BaFel_yTayO3-6 (0 _〈 y -〈 0.2) were synthesized via a simple solid state reac- tion. The cubic perovskite structure can be obtained when y is over 0.1. BaFeo.Ta0.lO3-6 (BFT0.1) membrane shows the highest oxygen permeation flux, which can reach 1.6 ml. min- 1. cm-2 at 950 ℃ under the gradient of air/He. The O2-TPD results reveal that BaFe0.9Ta0.lO3-a material shows an excellent reversibility and phase structure stability in air. The oxygen permeation flux is limited by the bulk diffusion when the membrane thick- ness is over 0.8 mm, and it is limited by both the bulk diffusion and the surface exchange when the membrane thickness is below 0.5 mm. Stable oxygen permeation fluxes are obtained during 180 h operation.
基金Project(20192BAB216015)supported by the Science and Technology Program of Jiangxi Province,ChinaProjects(GJJ180464,GJJ171499)supported by the Science and Technology Program of Education Department of Jiangxi Province,China+2 种基金Project(jxxjbs17057)supported by the Scientific Research Foundation of Jiangxi University of Science and Technology,ChinaProject([2018]50)supported by the Key R&D Programs of Science and Technology Project of Ganzhou City,ChinaProject([2017]179)supported by the Science and Technology Project of Ganzhou City,China。
文摘Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)perovskite oxide.The obtained porous layered LSCF has a large specific surface area of 23.74 m^(2)/g,four times higher than that prepared by the traditional sol-gel method(5.08 m^(2)/g).The oxygen reduction reaction activity of the oxide in 0.1 mol/L KOH solution was studied using a rotating ring-disk electrode.In the tests,the initial potential of 0.88 V(vs.reversible hydrogen electrode)and the limiting diffusion current density of 5.02 mA/cm^(2)were obtained at 1600 r/min.Therefore,higher catalytic activity and stability were demonstrated,compared with the preparation of LSCF perovskite oxide by the traditional method.
文摘The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different Mn-O bond lengths indicate that there is a strong Jahn-Teller distortion of the MnO6 octahedron, which associates with a structural phase transition from cubic symmetry (Pm3m) to tetragonal symmetry (I4/mcm), and the Jahn- Teller ordering stabilizes a chain like (C-type) antiferromagnetie ground state. The electronic structures indicate that SrMnO3 and Sr1-xCexMnO3 (z=0.125 and 0.25) are semiconductor and metallic, respectively. The doping of SrMnO3 with cerium induces simultaneously a decrease in the electrical resistivity, which can be attributed to the formation of Mn3+ as a result of charge compensation. The density of states and charge density map present that hybridization exists between some of O bands with those of Mn and Ce bands, the bonding between Sr and O is mainly ionic. Density of states and magnetic moment calculations show that the formal valence state of the Ce ion is trivalence.
基金Supported by the National Science Fund for Distinguished Young Scholars of China(21225625)the National Natural Science Foundation of China(21176087)the Specialized Research Fund for the Doctoral Program of Higher Education(20110172110013)
文摘Cobalt-free oxides GdxBal-xFeO3-σas(0.01 _〈 x _〈 0.1 ) were achieved by a solid state reaction method. It is found that GdxBal-xFeO3-σas(0.025 _〈 x _〈 0.1) exhibits the cubic perovskite structure. Among GdxBal-xFeO3-σas (0.025 -〈 x -〈 0.1 ), the GdxBal-xFeO3-σas (GBF2.5) membrane shows the outstanding phase structure stability and the highest oxygen permeation, which can reach 1.44 ml. cm- 2. rain- 1 at 950 ℃ under air/He oxygen partial pressure gradient. The GBF2.5 membrane was successfully operated for more than 100 h at 800 ℃ and the oxygen permeation flux through the membrane is 0.62 ml. cm- 2. rain- 1. After 100 h oxygen permeation experiment at 800℃, X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDXS) demonstrate that the GBF2.5 exhibits phase structure stability even at intermediate temoerature.
基金Supported by the National Natural Science Foundation of China (No. 20236020, No. 20325621)863 Hi-Technology Research and Development Program of China (No. 2001AA325014)the Talent Training Program of the Beijing City (No. 9558103500)the Fok Ying Tung Foundation (No. 81063).
文摘A thermodynamic model has been developed to determine the reaction conditions favoring low temperature direct synthesis of barium titanate (BaTiO3). The method utilizes standard-state thermodynamic data for solid and aqueous species and a 0ebye-Huckel coefficients model to represent solution nonideality. The method has been used to generate phase stability diagrams that indicate the ranges of pH and reagent concentrations, for which various species predominate in the system at a given temperature. Also, yield diagrams have been constructed that indicate the concentration, pH and temperature conditions for which different yields of crystalline BaTiO3 can be obtained. The stability and yield diagrams have been used to predict the optimum synthesis conditions (e.g., reagent concentrations, pH and temperature). Subsequently, these predictions have been experimentally verified. As a result, phase-pure perovskite BaTiO3 has been obtained at temperature ranging from 55 to 85℃ using BaCl2, TiCl4 as a source for Ba and Ti, and NaOH as a precipitator.
基金Projects(51673214,51673218,61774170)supported by the National Natural Science Foundation of ChinaProject(2017YFA0206600)supported by the National Key Research and Development Program of China。
文摘Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.
基金supported by the Basic Research program through the National Research Foundation of Korea (NRF) funded by Ministry, Science and Technology (MEST) (2011-0030058)
文摘The lead-free SrZrO3-modified Bi0.5Na0.5TiO3(BNT-SZ100 x, with x=0-0.15) ceramics were fabricated by a conventional solid-state reaction method. The effects of SZ addition on BNT ceramics were investigated through X-ray diffraction(XRD), scanning electron microscopy(SEM), ferroelectric and electric field-induced strain characterizations. XRD analysis revealed a pure perovskite phase without any traces of secondary phases. Ferroelectric and bipolar field induced-strain curves indicated a disruption of ferroelectric order upon SZ addition into BNT ceramics. A maximum value of remnant polarization(32 μC/cm2) and piezoelectric constant(102 pC/N) was observed at 5%(mole fraction) of SZ. Maximum value of the electric field-induced strain(Smax=0.24%) corresponding to normalized strain(Smax/Emax= d*33= 340 pm/V) was obtained at BNT-SZ9.
基金supported by the National Key Research and Development Program on Nano Science and Technology of the Ministry of Science and Technology of China(No.2016YFA0200602 and No.2018YFA0208702)the National Natural Science Foundation of China(No.21573211 and No.21633007)the Anhui Initiative in Quantum Information Technologies(No.AHY090200)。
文摘Two thin-film 2 D organic-inorganic hybrid perovskites,i.e.,2-phenylethylammonium lead iodide(PEPI)and 4-phenyl-1-butylammonium lead iodide(PBPI)were synthesized and investigated by steady-state absorption,temperature-dependent photoluminescence,and temperature-dependent ultrafast transient absorption spectroscopy.PBPI has a longer organic chain(via introducing extra ethyl groups)than PEPI,thus its inorganic skeleton can be distorted,bringing on structural disorder.The comparative analyses of spectral profiles and temporal dynamics revealed that the greater structural disorder in PBPI results in more defect states serving as trap states to promote exciton dynamics.In addition,the fine-structuring of excitonic resonances was unveiled by temperature-dependent ultrafast spectroscopy,suggesting its correlation with inorganic skeleton rather than organic chain.Moreover,the photoexcited coherent phonons were observed in both PEPI and PBPI,pointing to a subtle impact of structural disorder on the low-frequency Raman-active vibrations of inorganic skeleton.This work provides valuable insights into the optical properties,excitonic behaviors and dynamics,as well as coherent phonon effects in 2 D hybrid perovskites.
文摘Vickers indentation test was used to study the effects of mineral composition and microstructure on crack resistance of sintered ore, and the initiation and propagation of cracks in different minerals contained in sintered ore were examined. The results indicate that the microstructure of calcium ferrites is a major factor influencing crack resistance of sintered ore. Finer grain size of calcium ferrite will lead to higher cracking threshold and better crack resistance of sintered ore. The formation of calcium ferrite with fine grain size during sintering process is favorable for crack resistance of sintered ore.
文摘The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-x Ce xFeO 3(·K) has a good thermal stability if x is less than or equal to 0.5 . But when x is greater than 0.5 , La 1-x Ce xFeO 3(·K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x=0.5, the conversion of carbon monoxide is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity, and has little impact on the thermal stability. La 0.5 Ce 0.5 FeO 3 (·K) is a promising chromium free high temperature shift catalyst.
基金Project supported by CASR of Bangladesh University of Engineering and Technology(BUET)
文摘The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.
文摘Transport properties of LaFeO3 in the temperature range of 2 K 〈 T 〈 300 K have been explored for the first time using interaction potential developed by the author and found that our computed results on transport properties follow the same trend as that of available experimental values. These are scientifically and technologically important materials with orthorhombic perovskite-like structure and space group Pbnm. Lanthanum ferrite, LaFeO3 is semiconducting and antiferrom agnetically ordered at zero. The thermodynamics of perovskite-type or related materials of potential use in, e.g., solid oxide fuel cells have been studied to a rather limited extent only.
基金Project supported by the National Natural Science Foundation ofChina (No. 10274049) Foundation of the Natural Science of Zhe-jiang Province (Nos. RC015056 and 502122) Science & Tech-nology Development Foundation of the Education Committee of Sh-anghai Municipality (No. 02AK42)and the Shanghai LeadingAcademic Discipline Program (No. 01A16)
文摘Systematic studies of the transport properties of La0.67Ca0.33Mn1- FexO3 (x=0?0.3) systems showed that with x increasing Fe-doping content x the resistance increases and the insulator-metal transition temperature moves to lower temperature. For small doping content, the transport property satisfies metal transport behavior below the transition tem- perature, and above the transition temperature it satisfies the small polaron model. This behavior can be explained by Fe3+ doping, which easily forms Fe3+-O2 -Mn4+channel, suppressing the double exchange Mn3+-O2 -Mn4+ channel and enhancing ? ? the spin scattering of Mn ions induced by antiferromagnetic clusters of Fe ions.
基金jointly supported by the National Natural Science Foundation of China(No.62075223 and No.11674324)CAS Pioneer Hundred Talents Program of Chinese Academy of Sciences+5 种基金CAS-JSPS Joint Research Projects(GJHZ1891)Director Fund of Advanced Laser Technology Laboratory of Anhui Province(AHL2020ZR02)Key Lab of Photovoltaic and Energy Conservation Materials of Chinese Academy of Sciences(PECL2019QN005 and PECL2018QN001)the Natural Science Foundation of Top Talent of Shenzhen Technology University(No.2020101)Natural Science Research Project of Higher School of Anhui Province(KJ2020A0477)Initial Scientific Research Fund of Anhui Jianzhu University(No.2018QD60)。
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)has been widely adopted as hole transport material(HTM)in inverted perovskite solar cells(PSCs),due to high optical transparency,good mechanical flexibility,and high thermal stability;however,its acidity and hygroscopicity inevitably hamper the long-term stability of the PSCs and its energy level does not match well with perovskite materials with a relatively low open-circuit voltage.In this work,p-type delafossite CuCrO_(2)nanoparticles synthesized through hydrothermal method was employed as an alternative HTM for triple cation perovskite[(FAPbI_(3))_(0.87)(MAPbBr_(3))_(0.13)]_(0.92)(CsPbI_(3))_(0.08)(possessing better photovoltaic performance and stability than conventional CH3NH3PbI3)based inverted PSCs.The average open-circuit voltage of PSCs increases from 908 mV of the devices with PEDOT:PSS HTM to 1020 m V of the devices with CuCrO_(2)HTM.Ultraviolet photoemission spectroscopy demonstrates the energy band alignment between CuCrO_(2)and perovskite is better than that between PEDOT:PSS and perovskite,the electrochemical impedance spectroscopy indicates CuCrO_(2)-based PSCs exhibit larger recombination resistance and longer charge carrier lifetime than PEDOT:PSS-based PSCs,which contributes to the high VOCof CuCrO_(2)HTM-based PSCs.