The crystal structure,formation kinetics and micro-morphology of CaO·SiO2 during high-temperature sintering process were studied in low-calcium system by XRD,FT-IR,Raman and SEM-EDS methods.When the molar ratio o...The crystal structure,formation kinetics and micro-morphology of CaO·SiO2 during high-temperature sintering process were studied in low-calcium system by XRD,FT-IR,Raman and SEM-EDS methods.When the molar ratio of CaCO3 to SiO2 is 1.0,β-2CaO·SiO2 forms firstly during the heating process,and then CaO·SiO2 is generated by the transformation reaction of pre-formed 2CaO·SiO2 with SiO2.3CaO·SiO2 and 3CaO·2SiO2 do not form either in the heating or sintering process.Rising the sintering temperature and prolonging the holding time promote the phase transition of 2CaO·SiO2 to CaO·SiO2,resulting in the sintered products a small blue shift and broadening in Raman spectra.The content of CS can reach 97.4%when sintered at 1400℃ for 1 h.The formation kinetics of CaO·SiO2 follows the second-order chemical reaction model,and the corresponding apparent activation energy and pre-exponential factor are 505.82 kJ/mol and 2.16×10^14 s^−1 respectively.展开更多
Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder w...Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder was prepared by Pechini technique with a calcining temperature of 1300℃ for 3 h.The influence of liquid/powder(L/P)rate on the setting time and the mechanical property of TSC was studied.Characterization methods including XRD,FTIR,SEM-EDS,TEM,and ICP-AES were utilized to study the properties of C3S powder and its hydrated cement.The bioactivity and biocompatibility of the cement were investigated by soaking test and cell culture,respectively.The results show that the L/P rate plays an important role in the setting time and the compressive strength of TSC.The surface of TSC was covered by hydroxyapatite deposition during the immersion experiment and the cells attachment on the surface of TSC was well,which indicated that TSC has good bioactivity and biocompatibility.In addition,TSC has excellent antibacterial properties against Staphylococcus aureus.In conclusion,TSC is a promising candidate for root canal filling materials.展开更多
The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic inter...The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates(C-S-H),as well as the effect of moisture.The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions,which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface.Silica can be also adsorbed on the dry C-S-H surface by the H-bonds;however,the presence of water molecules on the interface may substantially decrease the affinities.Furthermore,the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics.The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally.The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica.A wetter interface and smaller loading rate may lead to a lower adhesion strength.The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials.展开更多
A field experiment was carried out in Cd-contaminated rice fields in a county of Hengyang to explore the effects of different types of remediation agents on the contents of soil available Cd and rice Cd,and rice yield...A field experiment was carried out in Cd-contaminated rice fields in a county of Hengyang to explore the effects of different types of remediation agents on the contents of soil available Cd and rice Cd,and rice yield by using one rice variety Longliangyouhuazhan,and 4 kinds of remediation agents:DG foliar control agent,SMA microbial inoculant,XFJ organic fertilizer and LXM calcium-and silicon-based passivator as test materials.The results showed that compared with CK,after applying DG foliar control agent,soil available Cd content increased rather than decreased,whereas rice Cd content decreased,not reaching a significant level.When applied with SMA microbial inoculant,soil pH value,soil available Cd and rice Cd contents showed a downward then upward trend with the increase of its application rates.Between 3 levels of SMA treatments,the content of soil available Cd in SMA2 was the lowest,decreased by 8.59%in comparison with CK,contrarily,two other SMA treatments were increasing instead of decreasing in the content of soil available Cd.The application of XFJ organic fertilizer and LXM calcium-and silicon-based passivator increased soil pH value,and reduced soil available Cd and rice Cd contents;the contents of soil available Cd and rice Cd decreased with their application rates increasing.Compared with CK,XFJ3 reduced soil available Cd content by 9.40%,and significantly reduced rice Cd content by 57.28%.In LXM3 treatment,soil available Cd content reduced by 14.57%,rice Cd content was 71.57%lower than CK,reaching the lowest level.In general,LXM calcium-and silicon-based passivator had the best Cd reduction effect,with the optimal application amount of 6000 kg/hm^(2).展开更多
Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrat...Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.展开更多
We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphol...We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.展开更多
Fly ash is an industrial by-product from coal combustion and has been widely used as mineral admixture in normal and high strength concretes. Owing to the pozzolanic reaction between calcium hydroxide and fly ash, com...Fly ash is an industrial by-product from coal combustion and has been widely used as mineral admixture in normal and high strength concretes. Owing to the pozzolanic reaction between calcium hydroxide and fly ash, compared with Portland cement, the hydration of concrete containing fly ash is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing fly ash. Similar to the hydration reaction of cement, fly ash activity is divided into three processes: an initial dormant period, a phase-boundary reaction process and a diffusion process. The mutual interactions between the cement hydration and fly ash reaction are considered through the available calcium hydroxide amount and available capillary water amount in the system. The properties of hardening fly ash blended concrete, such as the reaction degree of fly ash, chemically bound water, calcium hydroxide, and compressive strength, are determined from the contributions of cement hydration and fly ash pozzolanic reaction. The evaluated results show good accordance with the experimental results.展开更多
基金Projects(51674075,51774079)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901903)supported by the National Key R&D Program of ChinaProject(N182508026)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The crystal structure,formation kinetics and micro-morphology of CaO·SiO2 during high-temperature sintering process were studied in low-calcium system by XRD,FT-IR,Raman and SEM-EDS methods.When the molar ratio of CaCO3 to SiO2 is 1.0,β-2CaO·SiO2 forms firstly during the heating process,and then CaO·SiO2 is generated by the transformation reaction of pre-formed 2CaO·SiO2 with SiO2.3CaO·SiO2 and 3CaO·2SiO2 do not form either in the heating or sintering process.Rising the sintering temperature and prolonging the holding time promote the phase transition of 2CaO·SiO2 to CaO·SiO2,resulting in the sintered products a small blue shift and broadening in Raman spectra.The content of CS can reach 97.4%when sintered at 1400℃ for 1 h.The formation kinetics of CaO·SiO2 follows the second-order chemical reaction model,and the corresponding apparent activation energy and pre-exponential factor are 505.82 kJ/mol and 2.16×10^14 s^−1 respectively.
基金Project(2019JJ50797)supported by Hunan Provincial Natural Science Foundation of China。
文摘Tricalcium silicate cement(TSC)has been widely used in dental materials because of its self-setting behavior,good bioactivity,biocompatibility,osteoinductivity,and antibacterial effect.Tricalcium silicate(C3S)powder was prepared by Pechini technique with a calcining temperature of 1300℃ for 3 h.The influence of liquid/powder(L/P)rate on the setting time and the mechanical property of TSC was studied.Characterization methods including XRD,FTIR,SEM-EDS,TEM,and ICP-AES were utilized to study the properties of C3S powder and its hydrated cement.The bioactivity and biocompatibility of the cement were investigated by soaking test and cell culture,respectively.The results show that the L/P rate plays an important role in the setting time and the compressive strength of TSC.The surface of TSC was covered by hydroxyapatite deposition during the immersion experiment and the cells attachment on the surface of TSC was well,which indicated that TSC has good bioactivity and biocompatibility.In addition,TSC has excellent antibacterial properties against Staphylococcus aureus.In conclusion,TSC is a promising candidate for root canal filling materials.
基金Projects(6512009004A,51908119,U1706222)supported by the National Natural Science Foundation of ChinaProject(BK20190367)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘The interface properties between hydrated cement paste(hcp)and aggregates largely determine the various performances of concrete.In this work,molecular dynamics simulations were employed to explore the atomistic interaction mechanisms between the commonly used aggregate phase calcite/silica and calcium silicate hydrates(C-S-H),as well as the effect of moisture.The results suggest that the C-S-H/calcite interface is relatively strong and stable under both dry and moist conditions,which is caused by the high-strength interfacial connections formed between calcium ions from calcite and high-polarity non-bridging oxygen atoms from the C-S-H surface.Silica can be also adsorbed on the dry C-S-H surface by the H-bonds;however,the presence of water molecules on the interface may substantially decrease the affinities.Furthermore,the dynamics interface separation tests of C-S-H/aggregates were also implemented by molecular dynamics.The shape of the calculated stress-separation distance curves obeys the quasi-static cohesive law obtained experimentally.The moisture conditions and strain rates were found to affect the separation process of C-S-H/silica.A wetter interface and smaller loading rate may lead to a lower adhesion strength.The mechanisms interpreted here may shed new lights on the understandings of hcp/aggregate interactions at a nano-length scale and creation of high performance cementitious materials.
文摘A field experiment was carried out in Cd-contaminated rice fields in a county of Hengyang to explore the effects of different types of remediation agents on the contents of soil available Cd and rice Cd,and rice yield by using one rice variety Longliangyouhuazhan,and 4 kinds of remediation agents:DG foliar control agent,SMA microbial inoculant,XFJ organic fertilizer and LXM calcium-and silicon-based passivator as test materials.The results showed that compared with CK,after applying DG foliar control agent,soil available Cd content increased rather than decreased,whereas rice Cd content decreased,not reaching a significant level.When applied with SMA microbial inoculant,soil pH value,soil available Cd and rice Cd contents showed a downward then upward trend with the increase of its application rates.Between 3 levels of SMA treatments,the content of soil available Cd in SMA2 was the lowest,decreased by 8.59%in comparison with CK,contrarily,two other SMA treatments were increasing instead of decreasing in the content of soil available Cd.The application of XFJ organic fertilizer and LXM calcium-and silicon-based passivator increased soil pH value,and reduced soil available Cd and rice Cd contents;the contents of soil available Cd and rice Cd decreased with their application rates increasing.Compared with CK,XFJ3 reduced soil available Cd content by 9.40%,and significantly reduced rice Cd content by 57.28%.In LXM3 treatment,soil available Cd content reduced by 14.57%,rice Cd content was 71.57%lower than CK,reaching the lowest level.In general,LXM calcium-and silicon-based passivator had the best Cd reduction effect,with the optimal application amount of 6000 kg/hm^(2).
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Research Fund of Science and Technology of Hunan Province,China
文摘Electrolytic manganese residue(EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate(EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions(p H 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals(Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.
文摘We report on the ability to create complex 3D flower-like SiO2 in vitro via CaCO3 micropar- icles supported by polyethyleneimine mediated biosilicification under experimentally altered chemical influences. The morphology, structure, composition of the product have been inves- tigated with the X-ray photoelectron spectrum, scanning electron microscope, transmission electron microscope, and energy-dispersive spectroscopy. Tile overall morphologies could be controlled to shift from a characteristic network of flower-like silica sphere to a sheet-like structure by adjusting physical adsorption of different amount of polyethyleneimine onto the surface of the CaCO3 microparticles.
基金supported by 2012 Research Grant from Kangwon National University
文摘Fly ash is an industrial by-product from coal combustion and has been widely used as mineral admixture in normal and high strength concretes. Owing to the pozzolanic reaction between calcium hydroxide and fly ash, compared with Portland cement, the hydration of concrete containing fly ash is much more complex. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of concrete containing fly ash. Similar to the hydration reaction of cement, fly ash activity is divided into three processes: an initial dormant period, a phase-boundary reaction process and a diffusion process. The mutual interactions between the cement hydration and fly ash reaction are considered through the available calcium hydroxide amount and available capillary water amount in the system. The properties of hardening fly ash blended concrete, such as the reaction degree of fly ash, chemically bound water, calcium hydroxide, and compressive strength, are determined from the contributions of cement hydration and fly ash pozzolanic reaction. The evaluated results show good accordance with the experimental results.