Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite s...Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite samples prepared from oxidation of Mn(OH)2 with 5%, 10%, and 20% Co/(Mn + Co) molar ratios (5Co-Na-bus, 10Co-Na-bus, and 20Co-Na-bus), were used to prepare todorokite, a common Mn oxide on the Earth's surface, using Mg2+/Co2+ ions as a template. The results showed that todorokites could be obtained by reflux treatment of Mg2+-exchanged non-doped Na-buserite and three Co-doped Na-buserites at atmospheric pressure. However, the formation of todorokites was prohibited by reflux treatment of Co2+-exchanged Na-bus, 5Co-Na-bus, and 10Co-Na-bus samples. Instead, todorokite was obtained by the reflux treatment of Co2+-exchanged 20Co-Na-bus samples under atmospheric pressure. X-ray photoelectron spectroscopy analysis showed that doped Co existed as Co3+ in the MnOs layers of doped Na-buserites. The amount of substituted Co3+ in the MnO6 layers may play a key role in the conversion of buserite to todorokite using Co2+ ions as a template.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41001139 and 40771102)
文摘Cobalt (Co) exists in significant quantities in naturally occurring manganese (Mn) oxides and alters the growth of Mn oxide crystals. Four-layered Mn oxides, Na-buserite (Na-bus) and three Co-doped Na-buserite samples prepared from oxidation of Mn(OH)2 with 5%, 10%, and 20% Co/(Mn + Co) molar ratios (5Co-Na-bus, 10Co-Na-bus, and 20Co-Na-bus), were used to prepare todorokite, a common Mn oxide on the Earth's surface, using Mg2+/Co2+ ions as a template. The results showed that todorokites could be obtained by reflux treatment of Mg2+-exchanged non-doped Na-buserite and three Co-doped Na-buserites at atmospheric pressure. However, the formation of todorokites was prohibited by reflux treatment of Co2+-exchanged Na-bus, 5Co-Na-bus, and 10Co-Na-bus samples. Instead, todorokite was obtained by the reflux treatment of Co2+-exchanged 20Co-Na-bus samples under atmospheric pressure. X-ray photoelectron spectroscopy analysis showed that doped Co existed as Co3+ in the MnOs layers of doped Na-buserites. The amount of substituted Co3+ in the MnO6 layers may play a key role in the conversion of buserite to todorokite using Co2+ ions as a template.