Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis...Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.展开更多
This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by mo...This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.展开更多
To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by me...To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by means of XRD, SEM and EDS. In this process, the mixture of TiO2 powder and CaC12 was pressed into pieces as feed preform and was reduced by calcium vapor. Titanium powders was recovered after leaching from the reduced preform with hydrochloric acid and deionized water. The results indicate when the mass ratio of CaC12 to TiO2 is about 1:4 and at a constant temperature of 1 273 K for 6 h in vacuum furnace, titanium powders with 99.55% purity by EDS analysis and irregular shape (8-15 μm in particle size) are obtained.展开更多
A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened ...A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.展开更多
To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ...To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.展开更多
IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·...IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·cm by the IrO2 intermixing ratio from 0.55 to 0.78 in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of IrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor. Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.展开更多
Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to charact...Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.展开更多
The preparation and characterization of alkaline resistant porous ceramics from potassium titanate whiskers are studied. K2Ti4O9 whiskers in the whisker preforms (mixtures of K2Ti6O13 and K2Ti4O9) were completely co...The preparation and characterization of alkaline resistant porous ceramics from potassium titanate whiskers are studied. K2Ti4O9 whiskers in the whisker preforms (mixtures of K2Ti6O13 and K2Ti4O9) were completely converted to K2Ti6O13 at 960℃. The alkaline resistance as well as the change in bending strength, porosity and permeability of the ceramics was investigated by altering the composition of the preforms in which the content of K2Ti6O13 whiskers was higher than 50% (molar fraction). The alkaline resistance of the porous K2Ti6O13 ceramics is found much higher than that of Al2O3 in caustic NaOH solutions, and further study indicates that the K2Ti6O13 ceramics can be stably used in solutions of pH〉2.0. The bending strength increases initially with the content of the raw K2Ti6O13 in the preforms up to 66% (molar fraction) and then decreases, contrary to the behaviors of porosity and permeability. The values of bending strength, porosity and permeability of the ceramics prepared from the preform of 80% (molar fraction) raw K2Ti6O13 whiskers are respectively 56MPa, 29.4% and 330L·m^-2〈h^-1 , which are comparable to those of the porous Al2O3 ceramics.展开更多
A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of s...A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.展开更多
Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated....Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated. The ultra-fine zirconia-mullite composite ceramics were prepared from the amorphous bulk treated at 980 ℃ for nucleation and 1 140℃ for crystallization. The phase transformation of the ceramics was examined using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The microstructural features of the samples were evaluated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and transmission electron microscopy (TEM). The mechanical properties were also determined using Vickers indentation. The results show that the TiO2 additives with mass fraction of 1%-7% reduce the formation temperature of t-ZrO2 and mullite. When the mass fraction of TiO2 additives is less than 5%, the phases do not change, and most of TiO2 dissolves in ZrO2. When the mass fraction of TiO2 additives is over 5%, the excessive TiO2 forms a new phase, ZrTiO4. Meanwhile, the results also show that TiO2 additives have a great impact on the microstructure and mechanical properties of zirconia-mullite composites. As the TiO2 content increases from 1% to 7% (mass fraction), the grain size and the Vickers hardness of zirconia-mullite composites increase. The composite with 3% (mass fraction) TiO2 additives attains relatively higher fracture toughness.展开更多
文摘阐述了现阶段制备金属钛的工艺和方法,包括Kroll法和Hunter法、FFC(Fray Farthing Chen)剑桥工艺、OS(Ono Suzuki)法、EMR/MSE(Electronically Mediated Reaction/Molten Salt Electrolysis)法、PRP(Preform Reduction Process)工艺、USTB(University of Science and Technology Beijing)工艺、SOM法、离子液体电析法以及其他方法。对各种钛制备工艺的优缺点进行了讨论,指出钛冶炼新工艺的工业化可行性与实现工业化生产所面临的问题。
文摘叙述了Kroll法和FFC(Fray Farthing Chen)剑桥工艺制备钛的原理,并对制备钛的新工艺,包括OS(Ono Suzuki)法、EMR/MSE(Electronically Mediated Reaction/Molten Salt Electrolysis)法、PRP(Preform Reduction Process)工艺和USTB(University of Science and Technology Beijing)工艺的还原机理与工艺特点进行了总结。对各种钛制备工艺的优缺点进行了分析讨论,指出钛冶炼新工艺的工业化可行性与实现工业化生产所面临的问题。
基金Project (NS2010153) supported by Nanjing University of Aeronautics and Astronautics Research Funding, ChinaProject (BE2009130) supported by Jiangsu Key Technology R&D Program, China
文摘Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.
基金Supported by the National Natural Science Foundation of China (No.20306030) and China Postdoctoral Science Foundation (No.2003033240).
文摘This paper describes a new method for producing TiCl4 by chloridizing materials of high content CaO and MgO, in which a combined fluidized bed is used as a reactor to avoid agglomeration between particles caused by molten CaCl2 and MgCl2. The combined fluidized bed consists of at least a riser tube and a semi-circulating fluidized bed. Two kinds of high titanium slag, in which the total mass content of CaO and MgO is 2.03% and 9.09% respectively, are employed to examine the anti-agglomeration effect and the conversion of the materials when the temperature ranges are between 923.15K and 1073.15K, gas apparent velocity 0.7--1.1m.s-1, and inlet amount of solid materials is 4.6-7.0kg·h^-1. It is found that the anti-agglomeration effect in the combined fluidized bed is satisfactory and the new method can achieve a TiCl4 production capacity of 14.0-75.4t·m^-2·d^-1 in relation to 25.0-- 40.0t·m^-2·d^-1 from the conventional bubble bed. Furthermore, low-temperature chloridization, for example, at 923K or 973K, can also be used to produce TiCl4 and avoid agglomeration.
基金Project(51004058) supported by the National Natural Science Foundation of ChinaProject(2011FB039) supported by the Natural Science Foundation of Yunnan Province,China
文摘To develop an effective process for titanium powders production, a calciothermic reduction process of pigment titanium dioxide (w(TiO2)〉98%), based on the preform reduction process (PRP), was investigated by means of XRD, SEM and EDS. In this process, the mixture of TiO2 powder and CaC12 was pressed into pieces as feed preform and was reduced by calcium vapor. Titanium powders was recovered after leaching from the reduced preform with hydrochloric acid and deionized water. The results indicate when the mass ratio of CaC12 to TiO2 is about 1:4 and at a constant temperature of 1 273 K for 6 h in vacuum furnace, titanium powders with 99.55% purity by EDS analysis and irregular shape (8-15 μm in particle size) are obtained.
基金Supported by Shanghai Nano Technology Special Program (No.0452nm017).
文摘A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a liquid catalytic phase transfer method. When the intensity of applied magnetic field weakened to zero, the remnant magnetism of the prepared photocatalyst faded to zero. The photocatalytst can be separated from water when an external magnetic field is added and redispersed into aqueous solution after the external magnetic field is eliminated, that makes the photocatalysts promising for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst indicating that the magnetic SiOffNiFe204 (SN) particle was compactly enveloped by P-25 titania and Tit2 shell was formed. The magnetic composite showed high photocatalytic activity for the degradation of methyl orange in water. A thin SiO2 layer between NiFe2O4 and TiO2 shell prevented effectively the leakage of charges from TiO2 particles to NiFe2O4, which gave rise to the increase in photocatalytic activity. Moreover, the experiment on recycled use of TSN demonstrated a good repeatability of the photocatalytic activity.
基金Project(51504060) supported by the National Natural Science Foundation of ChinaProjects(2016YFB0301201,2016YFB0300603) supported by the National Key Research and Development Program of ChinaProject(N160713001) supported by the Fundamental Research Funds for the Central Universities,China
文摘To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.
基金supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Koreasupported by Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0001-226)
文摘IrO2-TiO2 thin films were prepared by atomic layer deposition using Ir(EtCp)(COD) and titanium isopropoxide (TTIP). The resistivity of IrO2-TiO2 thin films can be easily controlled from 1 500 to 356.7 μΩ·cm by the IrO2 intermixing ratio from 0.55 to 0.78 in the IrO2-TiO2 thin films. The low temperature coefficient of resistance(TCR) values can be obtained by adopting IrO2-TiO2 composite thin films. Moreover, the change in the resistivity of IrO2-TiO2 thin films was below 10% even after O2 annealing process at 600 ℃. The step stress test results show that IrO2-TiO2 films have better characteristics than conventional TaN08 heater resistor. Therefore, IrO2-TiO2 composite thin films can be used as a heater resistor material in thermal inkjet printhead.
基金Project(20976016)supported by the National Natural Science Foundation of ChinaProject(09JJ606)supported by the Natural Science Foundation of Hunan Province,ChinaProject(08FJ1002)supported by Key Science Research Project of the Hunan Provincial Natural Science,China
文摘Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.
基金Supported by the Funds for 0utstanding Young Researchers from the National Natural Science Foundation of China (Nos.29925616, 20428606), the National Natural Science Foundation of China (Nos.20236010, 20246002, 20376032), the Natural Foundation of Jiangsu Province (BK2004215), the National High Technology Development Program of China (No.2003AA333010, No.2006AA03Z455), the State Key Development Program for Basic Research of China (No.2003CB615700), CNPC Program (W06-03C-01-03-02).
文摘The preparation and characterization of alkaline resistant porous ceramics from potassium titanate whiskers are studied. K2Ti4O9 whiskers in the whisker preforms (mixtures of K2Ti6O13 and K2Ti4O9) were completely converted to K2Ti6O13 at 960℃. The alkaline resistance as well as the change in bending strength, porosity and permeability of the ceramics was investigated by altering the composition of the preforms in which the content of K2Ti6O13 whiskers was higher than 50% (molar fraction). The alkaline resistance of the porous K2Ti6O13 ceramics is found much higher than that of Al2O3 in caustic NaOH solutions, and further study indicates that the K2Ti6O13 ceramics can be stably used in solutions of pH〉2.0. The bending strength increases initially with the content of the raw K2Ti6O13 in the preforms up to 66% (molar fraction) and then decreases, contrary to the behaviors of porosity and permeability. The values of bending strength, porosity and permeability of the ceramics prepared from the preform of 80% (molar fraction) raw K2Ti6O13 whiskers are respectively 56MPa, 29.4% and 330L·m^-2〈h^-1 , which are comparable to those of the porous Al2O3 ceramics.
基金Project(06JJ50150) supported by the Hunan Provincial Natural Science Foundation of China
文摘A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.
基金Project(50721003) supported by the National High Technology Research and Development Program of China for Creative Research Group
文摘Zirconia-mullite composite ceramics were fabricated by in-situ controlled crystallization of Si-Al-Zr-O amorphous bulk. The effects of TiO2 addition on the fabrication of zirconia-mullite composites were investigated. The ultra-fine zirconia-mullite composite ceramics were prepared from the amorphous bulk treated at 980 ℃ for nucleation and 1 140℃ for crystallization. The phase transformation of the ceramics was examined using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The microstructural features of the samples were evaluated with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and transmission electron microscopy (TEM). The mechanical properties were also determined using Vickers indentation. The results show that the TiO2 additives with mass fraction of 1%-7% reduce the formation temperature of t-ZrO2 and mullite. When the mass fraction of TiO2 additives is less than 5%, the phases do not change, and most of TiO2 dissolves in ZrO2. When the mass fraction of TiO2 additives is over 5%, the excessive TiO2 forms a new phase, ZrTiO4. Meanwhile, the results also show that TiO2 additives have a great impact on the microstructure and mechanical properties of zirconia-mullite composites. As the TiO2 content increases from 1% to 7% (mass fraction), the grain size and the Vickers hardness of zirconia-mullite composites increase. The composite with 3% (mass fraction) TiO2 additives attains relatively higher fracture toughness.