A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode tow...A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.展开更多
文摘A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.