We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.O...We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.Oxygen treatment showed the surface change of NbSTO films has immense influence on the resistance switching.The resistance ratio of two resistance states decreased after oxygen treatment.With tested-temperature rising,the resistance and resistance ratio of two resistance states increased.The resistance switching of Pt/NbSTO junction as a function of oxygen-treatment and temperature can be explained by the charge trapping and detrapping process in the Pt/NbSTO interface,which will help understand the resistance switching mechanism of oxides.展开更多
Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force li...Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 ℃ and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as developed waveguides for operating wavelength show the planar waveguide behavior of the films. calculated theoretically matches exactly with the (632.8 nm) and the measured optical properties展开更多
基金supported by the National Natural Science Foundation of China(Grant No 11004251)the Basic Foundation of China University of Petroleum(Beijing)(Grant No.01JB0007)the Development Foundation of China University of Petroleum(Beijing)(Grant No.01JB0021)
文摘We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.Oxygen treatment showed the surface change of NbSTO films has immense influence on the resistance switching.The resistance ratio of two resistance states decreased after oxygen treatment.With tested-temperature rising,the resistance and resistance ratio of two resistance states increased.The resistance switching of Pt/NbSTO junction as a function of oxygen-treatment and temperature can be explained by the charge trapping and detrapping process in the Pt/NbSTO interface,which will help understand the resistance switching mechanism of oxides.
文摘Inorganic silica-titania thin films with thicknesses 150 nm-200 nm are deposited on high purity and polished silicon wafer and silica glass substrates by sol-gel dipping process and are patterned by capillary force lithography technique. Subsequently grating structure is embossed in green stage. The patterned gel films are subjected to stepwise heat treatment to 500 ℃ and above in pure oxygen atmosphere in order to achieve major conversion of mixed-gel to oxide optical films which are characterized by Ellipsometry, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) to optimize the fabrication parameters and to get perfectly matched film. Removal of organics and formation of perfectly inorganic silica-titania network at optimized heat treatment in controlled environment are ensured by FTIR spectral study. The difference in refractive indices between the substrate and coated film as developed waveguides for operating wavelength show the planar waveguide behavior of the films. calculated theoretically matches exactly with the (632.8 nm) and the measured optical properties