In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical pro...TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.展开更多
Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders bal...Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.展开更多
Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase component...Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase components and microstructure of the composite powder. The hydrogen sorption properties of the composite powder were investigated by DSC and PCT techniques. According to the data from PCT measurements, the hydrogenation enthalpy and entropy changes of the composite powder are calculated to be-71.5 kJ/mol and-130.1 J/(K·mol), respectively. Besides, the hydrogenation activation energy is determined to be 77.2 kJ/ mol. The results indicate that TiO2 added into Mg by arc plasma method can act as a catalyst to improve the hydrogen sorption kinetic properties of Mg.展开更多
This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an eq...This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.展开更多
An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nit...An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nitriding at 400℃, the TC4 alloy is nitrided on surface and dispersion strengthened in bulk at the same time. The white nitriding layer is formed after some time of nitriding. The nitriding speed increases with the deformation degree. The construction was investigated by XRD and the nitride is Ti3N(2-X). The wear test was carried out and results exhibit that the nitrided samples have better wear resistance.展开更多
To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanica...To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.展开更多
In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on ...In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.展开更多
High-density titanium alloys with different grains were prepared by spark plasma sintering(SPS) at 900 ℃ and 15 MPa using spherical powder generated by the plasma rotating electrode process(PREP) and nonspherical pow...High-density titanium alloys with different grains were prepared by spark plasma sintering(SPS) at 900 ℃ and 15 MPa using spherical powder generated by the plasma rotating electrode process(PREP) and nonspherical powders generated by hydrogenation-dehydrogenation(HDH) and molten salt electrolysis(MSE) as raw materials. Studies have shown that the PREP sample is a dense lamellar α structure and that the sample is clean. The microstructure of the HDH sample is composed of equiaxed α and lamellar α structures, and there are many flaws on the surface of the sample. The MSE samples are composed of α lamellar and coarse equiaxed crystals. The integral grain size is bulky, there are many irregular pores in the samples, and the samples are not clean. Of the three samples, the HDH sample has the largest compressive strength(526.85 MPa) and hardness(HV 293.1) but poor plasticity(compression strain is 26.61%);the compressive strengths of the PREP and MSE samples are 268.47 and 251.23 MPa, the compressive strains are 45.08% and 17.44%, and the microhardness values are HV138.6 and HV203.4, respectively.展开更多
This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was c...This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.展开更多
A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of di...A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of different oxygen contents via vacuum sintering and spark plasma sintering(SPS), respectively. After subsequent heat treatments, high-throughput characterizations of the microstructures and mechanical properties by localized measurements were conducted. The Ti-7% Mo(molar fraction) alloy with an oxygen content ranging from 1.3×10^(-3) to 6.2×10^(-5)(mass fraction) was obtained, and the effects of oxygen on the microstructural evolution and mechanical properties were studied. The results show that SPS is an effective way for fabricating fully dense Ti alloy with a compositional gradient. The average width of α′ phase coarsens with the increase of the content of oxygen. The content of α″ martensitic phase also increases with the content of oxygen. At oxygen contents of 3×10^(-3) and 4×10^(-3)(mass fraction), the Ti alloys present the lowest microhardness and the lowest elastic modulus, respectively. The results also indicate that the martensitic phases actually decrease the hardness of Ti-7Mo alloy, and oxygen effectively hardens the alloy by solid solution strengthening. Therefore, the high-throughput characterization on a microstructure with a gradient content of oxygen is an effective method for rapidly evaluating the composition–property relationship of titanium alloys.展开更多
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
基金Prject(20111D0503200316)supported by the Programme for Peking Excellent Talents in University,ChinaProject(613135)supported by 973 Defence Plan of China
文摘TiB/Ti-1.5Fe-2.25Mo composites were synthesized in situ using the spark plasma sintering (SPS) method at temperatures of 850-1150 °C. The effect of the sintering temperature on microstructure and mechanical properties of the composites was investigated. The results indicate that the aspect ratio of the in situ synthesized TiB whiskers in Ti alloy matrix decreases rapidly with an increase in sintering temperature. However, both the relative density of the sintered specimens and the volume content of TiB whiskers in composites increase with increasing sintering temperature. Thus, the bending strength of the composites synthesized using SPS process increases slowly with increasing the sintering temperature from 850 to 1150 °C. TiB/Ti-1.5Fe-2.25Mo composite synthesized at 1150 °C using SPS method exhibits the highest bending strength of 1596 MPa due to the formation of fine TiB whiskers in Ti alloy matrix and the dense microstructure of the composite.
基金Project(51104066)supported by the National Natural Science Foundation of ChinaProjects(2015A010105011,2015A020214008)supported by Science and Technology Program of Guangdong Province,ChinaProject(201505040925029)supported by Science and Technology Research Program of Guangzhou,China
文摘Bimodal-grained Ti containing coarse and fine grains was fabricated by high-energy ball milling and spark plasma sintering (SPS). The microstructure and mechanical properties of the compacts sintered by Ti powders ball-milled for different time were studied. Experimental results indicated that when the ball-milling time increased, the microstructure of sintered Ti was firstly changed from coarse-grained to bimodal-grained structure, subsequently transformed to a homogeneous fine-grained structure. Compared with coarse-grained Ti and fine-grained Ti, bimodal-grained Ti exhibited balanced strength and ductility. The sample sintered from Ti powders ball-milled for 10 h consisting of 65.3% (volume fraction) fine-grained region (average grain size 1 μm) and 34.7% coarse-grained region (grain size > 5 μm) exhibited a compress strength of 1028 MPa as well as a plastic strain to failure of 22%.
基金Project(11ZR1417600)supported by Shanghai Natural Science Foundation from Science and Technology Committee of Shanghai,ChinaProject(11PJ1406000)supported by‘Pujiang’Project from the Science and Technology Committee of Shanghai+1 种基金Project(12ZZ017)supported by Shanghai Education Commission,ChinaProject(20100073120007)supported by China Education Commission
文摘Mg-based Mg-TiO2 composite powder was prepared by arc plasma evaporation of the Mg+5%TiO2 mixture followed by passivation in air. ICP, XRD and SEM techniques were used to characterize the composition, phase components and microstructure of the composite powder. The hydrogen sorption properties of the composite powder were investigated by DSC and PCT techniques. According to the data from PCT measurements, the hydrogenation enthalpy and entropy changes of the composite powder are calculated to be-71.5 kJ/mol and-130.1 J/(K·mol), respectively. Besides, the hydrogenation activation energy is determined to be 77.2 kJ/ mol. The results indicate that TiO2 added into Mg by arc plasma method can act as a catalyst to improve the hydrogen sorption kinetic properties of Mg.
基金The Mexican Council of Science and Technology (CONACYT) for the support received under the scholarship (449474)
文摘This work focused on the influence of TiC reinforcing particles on the tribological properties of titanium matrix composites(TMCs)with open porosity,processed by spark plasma sintering(SPS).Materials composed of an equimolar mixture of Ti and TiH2 with 0,3,10 and 30 vol.% of TiC were sintered at 850 ℃.Nanoindentation and wear tests were carried out to assess the nanohardness and the wear resistance in a tribometer with a reciprocating sliding ball-on-flat configuration.Results showed a nanohardness increment from 5 to 14 GPa with increasing TiC content.The coefficient of friction(CoF)showed a minimum of 0.2 for 10% TiC grade,which also showed the lowest wear rate.For the low TiC content sample,adhesive wear with severe plastic deformation was identified.Meanwhile,medium content TiC sample showed a mechanical mixed layer(MML),whereas high TiC content composite showed abrasive as the main wear mechanism.In conclusion,the wear mechanisms,CoFs and wear volume changed with TiC content.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low temperature nitriding process for TC4(Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nitriding at 400℃, the TC4 alloy is nitrided on surface and dispersion strengthened in bulk at the same time. The white nitriding layer is formed after some time of nitriding. The nitriding speed increases with the deformation degree. The construction was investigated by XRD and the nitride is Ti3N(2-X). The wear test was carried out and results exhibit that the nitrided samples have better wear resistance.
基金Project(31160262)supported by the National Natural Science Foundation of ChinaProject(2013DH012)supported by the Innovation Platform Construction Project of Science and Technology of Yunnan Province,China
文摘To improve the bioactivity of Ti?Nb?Zr alloy,Ti?35Nb?7Zr?xHA(hydroxyapatite,x=5,10,15and20,mass fraction,%)composites were fabricated by spark plasma sintering.The effects of the HA content on microstructure,mechanical and corrosionproperties of the composites were investigated utilizing X-ray diffraction(XRD),scanning electron microscope(SEM),mechanicaltests and electrochemical tests.Results show that all sintered composites are mainly composed ofβ-Ti matrix,α-Ti andmetal?ceramic phases(CaO,CaTiO3,CaZrO3,TixPy,etc).Besides,some residual hydroxyapatites emerge in the composites(15%and20%HA).The compressive strengths of the composites are over1400MPa and the elastic moduli of composites((5%?15%)HA)present appropriate values(46?52GPa)close to that of human bones.The composite with15%HA exhibits low corrosion currentdensity and passive current density in Hank's solution by electrochemical test,indicating good corrosion properties.Therefore,Ti?35Nb?7Zr?15HA composite might be an alternative material for orthopedic implant applications.
基金financial support from the National Natural Science Foundation of China (No. 51975533)National Safety Academic Fund, China (No. U2130122)Public Projects of Zhejiang Province, China (Nos. LGJ22E050002, LGJ20E050002)
文摘In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.
基金Projects(51671152,51304153,51504191,51874225)supported by the National Natural Science Foundation of ChinaProject(14JK512)supported by Natural Science Foundation of Shaanxi Educational Committee,China+1 种基金Project(18JC019)supported by Shaanxi Provincial Department of Education Industrialization Project,ChinaProject(14JK1512)supported by Shaanxi Provincial Department of Education Natural Science Special Project,China
文摘High-density titanium alloys with different grains were prepared by spark plasma sintering(SPS) at 900 ℃ and 15 MPa using spherical powder generated by the plasma rotating electrode process(PREP) and nonspherical powders generated by hydrogenation-dehydrogenation(HDH) and molten salt electrolysis(MSE) as raw materials. Studies have shown that the PREP sample is a dense lamellar α structure and that the sample is clean. The microstructure of the HDH sample is composed of equiaxed α and lamellar α structures, and there are many flaws on the surface of the sample. The MSE samples are composed of α lamellar and coarse equiaxed crystals. The integral grain size is bulky, there are many irregular pores in the samples, and the samples are not clean. Of the three samples, the HDH sample has the largest compressive strength(526.85 MPa) and hardness(HV 293.1) but poor plasticity(compression strain is 26.61%);the compressive strengths of the PREP and MSE samples are 268.47 and 251.23 MPa, the compressive strains are 45.08% and 17.44%, and the microhardness values are HV138.6 and HV203.4, respectively.
基金financial supports from the Scientific and Technological Research Council of Turkey(No.215M895)。
文摘This study was carried out to investigate the possibility of titanium alloy metal powder production using low-power plasma torches.An argon DC non-transferred arc plasma torch was designed,and numerical analysis was conducted to determine the plasma jet properties and wire temperature.The highest velocities inside the nozzle attachment were between 838 and 1178 m/s.The velocities of the jets at the apex were between 494 and 645 m/s for different gas flow rates.The studied plasma gas flow rates had no significant effect on the effective plasma jet length.It was shown that the plasma jet length can be estimated by numerical analysis using the temperature and velocity changes of the plasma jet over distance.It was observed that the powders produced were spherical without any satellites.As a result of this study,a plasma torch was developed and powder production was performed successfully by using relatively low torch power.
基金Project(2014CB6644002)supported by the National Basic Research Program of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(51301203)supported by the National Natural Science Foundation of ChinaProject(2014M551827)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(2014GK3078)supported by the Science and Technology Planning of Hunan Province,China
文摘A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of different oxygen contents via vacuum sintering and spark plasma sintering(SPS), respectively. After subsequent heat treatments, high-throughput characterizations of the microstructures and mechanical properties by localized measurements were conducted. The Ti-7% Mo(molar fraction) alloy with an oxygen content ranging from 1.3×10^(-3) to 6.2×10^(-5)(mass fraction) was obtained, and the effects of oxygen on the microstructural evolution and mechanical properties were studied. The results show that SPS is an effective way for fabricating fully dense Ti alloy with a compositional gradient. The average width of α′ phase coarsens with the increase of the content of oxygen. The content of α″ martensitic phase also increases with the content of oxygen. At oxygen contents of 3×10^(-3) and 4×10^(-3)(mass fraction), the Ti alloys present the lowest microhardness and the lowest elastic modulus, respectively. The results also indicate that the martensitic phases actually decrease the hardness of Ti-7Mo alloy, and oxygen effectively hardens the alloy by solid solution strengthening. Therefore, the high-throughput characterization on a microstructure with a gradient content of oxygen is an effective method for rapidly evaluating the composition–property relationship of titanium alloys.