The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys a...The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.展开更多
Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,...Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.展开更多
基金Project(BE2011778)supported by Science and Technology Support Program of Jiangsu Province,ChinaProject(CE20115036)supported by Science and Technology Support Program of Changzhou City,China
文摘The influence of Zr content on the microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr (x=0, 3, 6, 9, 12, 15; mass fraction) alloys was investigated. It is shown that Ti-35Nb-4Sn-6Mo-xZr alloys appear to have equiaxed single β microstructure after solution treatment at 1023 K. It is found that the grains are refined first and then coarsened with the increase of Zr content. It is also found that Zr element added to titanium alloys has both the solution strengthening and fine-grain strengthening effect, and affects the lattice parameters. With increasing the Zr content of the alloys, the strength increases, the elongation decreases, whereas the elastic modulus firstly increases and then decreases. The mechanical properties of Ti-35Nb-4Sn-6Mo-9Zr alloy are as follows: σb=785 MPa, δ=11%, E=68 GPa, which is more suitable for acting as human implant materials compared to the traditional implant Ti-6Al-4V alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.51801009,52071005)the Youth Talent Support Program of Beihang University,China(No.YWF-21-BJ-J-1143)Shuangyiliu Fund of Beihang University,China(No.030810)。
文摘Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.